ارزیابی خواص پوشش اکسیدی پلاسمای الکترولیتی اعمالی روی قطعات منیزیمی خودرو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 فارغ التحصیل کارشناسی ارشد، دانشکده مهندسی و علم مواد، دانشگاه صنعتی شریف/ مهندس اداره مهندسی مونتاژ موتور، شرکت ایران خودرو

2 فارغ التحصیل کارشناسی ارشد، دانشکده مهندسی و علم مواد، دانشگاه صنعتی شریف

3 فارغ التحصیل کارشناسی ارشد، دانشکده مکانیک، دانشکدگان فنی دانشگاه تهران/ مهندس اداره مهندسی مونتاژ موتور، شرکت ایران خودرو

4 فارغ التحصیل کارشناسی، دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی

چکیده

در سال‌های اخیر استفاده از آلیاژهای منیزیم در صنعت خودروسازی به جهت خواص متالورژیکی مطلوب افزایش پیدا کرده است. اعمال پوشش بر روی قطعات منیزیمی به‌کاررفته در موتور خودرو نظیر پیستون با در نظر گرفتن شرایط کاری شدید آن­ها الزامی می‌باشد. در این پژوهش، ابتدا پوشش مدرن اکسیداسیون پلاسمای الکترولیتی معرفی می‌شود و در ادامه خواص متالورژیکی پوشش ایجادشده بر روی آلیاژ AZ31 در الکترولیت‌های سیلیکاتی و آلومیناتی مورد بررسی و مقایسه قرار می‌گیرد. نتایج حاصل از مطالعات فازی بر روی پوشش‌ها نشان داد علاوه بر حضور فازهای MgF2 و MgO در هر دو پوشش، فازهای Mg2SiO4 و MgAl2O4 به‌ترتیب در پوشش‌های ایجادشده از الکترولیت سیلیکاتی و آلومیناتی وجود دارند. اعمال پوشش PEO منجر به کاهش قابل توجه سرعت خوردگی می­شود. سرعت خوردگی پوشش ایجاد شده در الکترولیت سیلیکاتیA.cm-2   6-10×24/2 و در الکترولیت آلومیناتیA.cm-2  7-10×5/9 می‌باشد که به ترتیب 30 و 68 برابر نسبت نمونه فاقد پوشش کمتر است. همچنین اعمال پوشش منجر به افزایش 72 و 94 برابری مقاومت الکتریکی سطح نسبت به نمونه فاقد پوشش می‌شود. بررسی میکروسکوپی نیز نشان داد که قطر متوسط تخلخل­ها در پوشش PEO ایجاد شده در الکترولیت سیلکاتی نسبت به پوشش آلومیناتی بزرگتر است.

کلیدواژه‌ها


عنوان مقاله [English]

The evaluation of plasma electrolytic oxidation properties on car compartments made with Mg alloy

نویسندگان [English]

  • Saeed Safari 1
  • Mohammadhossain Nouripour 2
  • Alireza Moshki 3
  • Hossein Safari 4
1 Department of Materials Science and Engineering, Sharif University of Technology/ Engine assembly engineering division, Iran Khodro Co.
2 Department of Materials Science and Engineering, Sharif University of Technology
3 Department of Mechanical Engineering, Tehran University/ Engine assembly engineering division, Iran Khodro Co.
4 Department of Mechanical Engineering, Islamic Azad University
چکیده [English]

In recent years, the automotive industry has expanded its usage of magnesium alloys because to their favorable metallurgical properties. It is, however, vital to coat the magnesium components like piston in the car engines because of their harsh working environment. In this study, beyond the introduction of novel plasma electrolytic oxidation coating for AZ31 Mg alloy, the metallurgical characteristics of coating generated in silicate and aluminate electrolytes are also examined. Phase studies revealed that along with the presence of MgF2 and MgO in both coating, Mg2SiO4 and MgAl2O4 were discovered in coatings created in silicate and aluminate electrolytes, respectively. The application of PEO resulted in a considerable drop in corrosion rate, such that the corrosion rate of the coating formed in silicate electrolyte is 2.24×10-6 A.cm-2 and that of the coating created in aluminate electrolyte is 9.5×10-7 A.cm-2, which are 30 and 68 times lower than the rate of uncoated samples, respectively. Additionally, as compared to the uncoated sample, the coating enhances the surface electrical resistance by 72 and 94 times. The microscopic analysis showed that the average diameter of porosities in PEO coating made by silicate electrolyte is higher than that of coating made by aluminate electrolyte

کلیدواژه‌ها [English]

  • Plasma electrolytic oxidation
  • Magnesium alloy
  • Piston
  • Corrosion
[1] H. Friedrich , S. Schumann, “Research for a new age of magnesium in the automotive industry”, journal of material processing technology, vol.117, pp.276-281, 2001.
[2] M. K. Kulekci, “Magnesium and its alloys applications in automotive industry”, The International Journal of Advanced Manufacturing Technology, Vol.39, pp.851-865, 2008.
[3] D. S. Kumar, C. T. Sasanka, K. Ravindra, K. N. S. Suman. “Magnesium and its alloys in automotive applications–a review”, Journal of Material Science and Technology, Vol.4, pp.12-30, 2015.
[4] M. Yeganeh, N. Mohammadi, “Superhydrophobic surface of Mg alloys: A review”, Journal of magnesium and alloys, Vol.6, pp.59-70, 2018.
[5] H. Yamagata, “The Science and Technology of Materials in Automotive Engines”, Woodhead Publishing, 2005.
[6] J. Tan, Jovan, S. Ramakrishna, “Applications of magnesium and its alloys: A review”, Applied Sciences, Vol.11, pp.61-68, 2021.
[7] J. Wang, X. Pang, H. Jahed. “Surface protection of Mg alloys in automotive applications: A review”, AIMS Materials Science, Vol.6, pp.567-600,2019.
[8] H. Dong, “Surface Engineering of Light Alloys  Aluminium, Magnesium and Titanium Alloys”, Woodhead Publishing, 2010.
[9] Gh. Barati, M. Aliofkhazraei, P. Hamghalam, N. Valizade, “Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications”, Journal of Magnesium and Alloys, Vol.5, pp. 74-132, 2017.
[10] A. L. Yerokhin, X. Nie, “Plasma electrolysis for surface engineering”, Surface and Coatings Technology, Vol.122, pp.73-93, 1999.
[11] F. Simchen, S. Maximilian, A. Kopp, T. Lampke, “Introduction to plasma electrolytic oxidation—An overview of the process and applications”, Coatings, Vol.10, pp.628-646, 2020.
[12] M. Kaseem, S, Fatimah, N, Nashrah, Y, Gun Ko, “Recent progress in surface modification of metals coated by plasma electrolytic oxidation: Principle, structure, and performance”, Progress in Materials Science, Vol.117, 2021.
[13] P. Gupta, G. Tenhundfeld, E. O. Daigle, D. Ryabkov, "Electrolytic plasma technology: Science and engineering - An overview", Surface and Coatings Technology, Vol.201, pp.8746-8760, 2007.
[14] R. O. Hussein, X. Nie, D. O. Northwood, “An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing”, Electrochimica Acta, Vol.112, pp.111-119, 2013.
[15] S. Aliasghari, P. Skeldon, G. E. Thompson, “Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings”, Applied Surface Science, Vol.316, pp.436-476, 2014.
[16] S. Onoa, S. Moronukia, Y. Morib, “Effect of electrolyte concentration on the structure and corrosion resistance of anodic Films formed on Magnesium through plasma electrolytic pxidation”, Electrochimica Acta, Vol.240, pp.415-423, 2017.
[17] Z. Qiu, R. Wang, Y. Zhang, “Study of Coating Growth Behavior During the Plasma Electrolytic Oxidation of Magnesium Alloy ZK60”, Journal of Materials Engineering and Performance, Vol.24, pp.1483-1491, 2015.
[18] W. C. Gu, G. H. Lv, H. Chen, G. L. Chen, “Characterisation of ceramic coatings produced by plasma electrolytic oxidation of aluminum alloy”, Materials Science and Engineering, Vol.447, PP.158–162, 2007.
[19] H. Duan, Ch. Yan, F. Wang, “Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution”, Electrochimica Acta, Vol.52, pp.5002-5009, 2007.
[20] D. Sreekanth, K. V. Warlu, N, Rameshbabu, “Effect of various additives on morphology and corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation”, Ceramics International, Vol.38, pp.4607-4615, 2011.
[21] A. Ghasemi, V. S. Raja, C. Blawert, W. Dietzel,  K. U. Kainer. “The role of anions in the formation and corrosion resistance of the plasma electrolytic oxidation coatings”, Surface and Coatings Technology, Vol.204, pp.1469-1478, 2010.
[22] Y. Ma, X. Nie, D. O. Northwood, H. Hu, “Systematic study of the electrolytic plasma oxidation process on a Mg alloy for corrosion protection”, Thin Solid Films, Vol.494, pp.296-301, 2006.
[23] L. S. Wang, C. X. Pan, “Characterisation of microdischarge evolution and coating morphology transition in plasma electrolytic oxidation of magnesium alloy”, Surface engineering, Vol.23, pp.324-328, 2007.
[24] G. A. Mengesha, J. P. Chu, B. S. Lou, J. W. Lee. “Corrosion performance of plasma electrolytic oxidation grown oxide coating on pure aluminum: effect of borax concentration”, Journal of Materials Research and Technology, Vol.9, pp.8766-8779, 2020.
[25] X. Li, X. Y. Liu, B. L. Luan, “Corrosion and wear properties of PEO coatings formed on AM60B alloy in NaAlO2 electrolytes”, Applied surface science, Vol.257, pp.9135-9141, 2011.
[26] J. J. Zhuang, R. G. Song, N. Xiang, Y. Xiong, Q. Hu, “Effect of current density on microstructure and properties of PEO ceramic coatings on magnesium alloy”, Surface Engineering, Vol.33, pp.744-752, 2017.
[27] S. Rahimi, A. Bordbar Khiabani, B. Yarmand, A. Kolahi, “Comparison of corrosion and antibacterial properties of Al alloy treated by plasma electrolytic oxidation and anodizing methods”, Materials Today: Proceedings, Vol.7, pp. 1567-1576, 2018.
[28] S. Viswanathan, “Superhydrophobic surfaces and coatings by electrochemical anodic oxidation and plasma electrolytic oxidation”, Advances in Colloid and Interface Science, Vol.283, pp. 234-245, 2020.
[29] Y. Rao, Q. Wang, J. Chen, C. Ramachandran, “Abrasion, sliding wear, corrosion, and cavitation erosion characteristics of a duplex coating formed on AZ31 Mg alloy by sequential application of cold spray and plasma electrolytic oxidation techniques”, Materials Today Communications, Vol.26, pp.947-978, 2021.
[30] J. A. Curran, T. W. Clyne, “The thermal conductivity of plasma electrolytic oxide coatings on aluminium and magnesium”, Surface and Coatings Technology, Vol.199, pp.177-183, 2005.
[31]  J. A. Curran, H. Kalkancı, Y. Magurova, T. W. Clyne, “Mullite-rich plasma electrolytic oxide coatings for thermal barrier applications”, Surface and Coatings Technology, Vol. 201, pp.8683-8687, 2007.
[32] E. Ramakrishnan, C. Premchand, P. Manojkumar, N. Rameshbabu, “Development of thermal control coatings on AA7075 by plasma electrolytic oxidation (PEO) process”, Materials Today: Proceedings, Vol. 46, pp.1085-1093, 2021.
[33] G. L. Song, A. Atrens, “Corrosion Mechanisms of Magnesium”, Advanced Engineering Materials, Vol.1, pp.11-33,1999. PEO reaction
[34] H. Duan, K. Du, Ch. Yan, F. Wang, “Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D”, Electrochimica Acta, Vol.51, pp.2898-2908, 2006.
[35] L. Pezzato, L. Bertolucci, R. Bertolini, A. G. Settimi, K. Brunelli, M. Olivier, M. Dabalà. “Corrosion and mechanical properties of plasma electrolytic oxidation‐coated AZ80 magnesium alloy”, Materials and Corrosion, Vol.70, pp.2103-2112. 2019.
[36] G. Rapheal, S. Kumar, C. Blawert, N. B. Dahotre, “Wear behavior of plasma electrolytic oxidation (PEO) and hybrid coatings of PEO and laser on MRI 230D magnesium alloy”, Wear, Vol.271, pp.1987-1997, 2011.