تزریق مستقیم متان در سیستم های موتوری پیشرفته: اثرات شرایط ترمودینایکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشگر، موسسه تحقیقات ملی STEMS

2 هیات علمی، دانشگاه L’Aquila

3 دانشجوی دکتری، دانشگاه L’Aquila

4 هیات علمی، دانشکده مهندسی مکانیک، دانشگاه سمنان

چکیده

به دلیل تراکم پذیری بالای گاز و نسبت های فشار بزرگ، تزریق مستقیم گاز موجب ایجاد فواره گازی تحت انبساط می شود. درک صحیح فیزیک این پدیده برای توسعه سامانه های تزریق مستقیم که در موتورهای احتراقی برای تزریق مستقیم متان یا هیدروژن استفاده می شوند، ضروری است. در این مقاله مشخصه یابی کوپل تجربی عددی فواره یک افشانه چند سوراخ انجام گرفت. مشخصه یابی تجربی فواره به کمک روش شیلرین انجام گرفت و محاسبات عددی به کمک نتایج تجربی به دست آمده صحه گذاری شد. حلگر بر پایه چگالی که قابلیت مدلسازی فواره های گازی با تراکم پذیری زیاد را دارد و در محیط نرم افزار Open foam توسعه داده شده است برای بررسی اثرات شرایط ترمودینامیکی روی توسعه فواره مورد استفاده قرار گرفت. نتایج نشان داد که با استفاده از شدت نور زیاد می توان مشخصه هایی از فواره که روی فرآیند تزریق سوخت و کیفیت مخلوط سوخت و هوا  موثر هستند را بهتر مشاهده و ارزیابی نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Direct injection of methane in advanced propulsion systems: effects of thermodynamic conditions

نویسندگان [English]

  • Luigi Allocca 1
  • Angelo De Vita 2
  • Francesco Duronio 2
  • Alessandro Montanaro 1
  • Stefano Ranieri 3
  • Alireza Hajialimohammadi 4
1 STEMS, Consiglio Nazionale delle Ricerche, Italy
2 Dip. Ing. Industriale, Informazione e Economia, Università de L’Aquila, Italy
3 PhD Candidate, Dip. Ing. Industriale, Informazione e Economia, Università de L’Aquila, Italy
4 Assistant professor, Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
چکیده [English]

The direct injection of gaseous fuels involves the presence of under-expanded jets due to the high pressure-ratios and the strong gas compressibility. Understanding the physical development of such processes is essential for developing Direct Injection (DI) devices suitable for application in internal combustion engines fueled by methane or hydrogen. In this work a coupled experimental-numerical characterization of a spray, issued by a multi-hole injector, was performed. The experimental characterization of the jet evolution was recorded by means of schlieren imaging technique and then a numerical simulation procedure was assessed using the measurements for validating. A density-based solver, capable of simulating highly compressible jets and developed within OpenFOAM environment, was used to study the effects of thermodynamic conditions on the development of the injection process. The obtained results shed more light on the characteristics of the gaseous spray demonstrating how these features really affects the development of the injection process and the quality of the air/fuel mixture.

کلیدواژه‌ها [English]

  • Methane injection
  • Optical diagnostic
  • Injection CFD
  • Nozzle geometry effects
  • Air/fuel mixture
[1] International Energy Agency, “Net Zero by 2050: A Roadmap for the Global Energy Sector,” p. 224, 2021.
[2] G. T. Chala, A. R. A. Aziz, and F. Y. Hagos, “Natural Gas Engine Technologies: Challenges and Energy Sustainability Issue,” Energies, vol. 11, no. 11, 2018, doi:10.3390/en11112934.
[3] M. I. Khan, T. Yasmin, and A. Shakoor, “Technical overview of compressed natural gas (CNG) as a transportation fuel,” Renewable and Sustainable Energy Reviews, vol. 51, pp. 785–797, 2015, doi:10.1016/j.rser.2015.06.053.
[4] L. Bartolucci, S. Cordiner, V. Mulone, and V. Rocco, “Natural gas stable combustion under ultra-lean operating conditions in internal combustion engines,” Energy Procedia, vol. 101, pp. 886–892, 2016, doi:https://doi.org/10.1016/j.egypro.2016.11.112. ATI 2016 - 71st Conference of the Italian Thermal Machines Engineering Association.
[5] F. Duronio, A. De Vita, L. Allocca, and M. Anatone, “Gasoline direct injection engines - A review of latest technologies and trends. Part 1: Spray breakup process,” 2020. doi:10.1016/j.fuel.2019.116948.
[6] F. Duronio, A. De Vita, A. Montanaro, and C. Villante, “Gasoline direct injection engines - A review of latest technologies and trends. Part 2,” 2020. doi:10.1016/j.fuel.2019.116947.
[7] L. Allocca, A. Montanaro, G. Meccariello, F. Duronio, S. Ranieri, and A. De Vita, “Under-Expanded Gaseous Jets Characterization for Application in Direct Injection Engines: Experimental and Numerical Approach,” SAE Technical Papers, vol. 2020-April, no. April, pp. 1–15, 2020, doi:10.4271/2020-01-0325.
[8] F. Duronio, A. Montanaro, S. Ranieri, L. Allocca, and A. De Vita, “Under-expanded jets characterization by means of cfd numerical simulation using an open foam density-based solver,” in 15th International Conference on Engines Vehicles, SAE International, sep 2021, doi:https://doi.org/10.4271/2021-24-0057.
[9] V. Vuorinen, J. P. Keskinen, C. Duwig, and B. J. Boersma, “On the implementation of low-dissipative Runge-Kutta projection methods for time dependent flows using OpenFOAM®,” Computers and Fluids, vol. 93, pp. 153–163, 2014, doi:10.1016/j.compfluid.2014.01.026.
[10] A. Hamzehloo and P. G. Aleiferis, “LES and RANS modelling of under-expanded jets with application to gaseous fuel direct injection for advanced propulsion systems,” International Journal of Heat and Fluid Flow, vol. 76, pp. 309–334, apr 2019, doi:10.1016/j.ijheatfluidflow.2019.01.017.
[11] V. Vuorinen, A. Wehrfritz, J. Yu, O. Kaario, M. Larmi, and B. J. Boersma, “Large-eddy simulation of subsonic jets,” Journal of Physics: Conference Series, vol. 318, no. SECTION 3, 2011, doi:10.1088/1742-6596/318/3/032052.
[12] A. Y. Deshmukh, M. Bode, H. Pitsch, M. Khosravi, D. v. Bebber, and G. Vishwanathan, “Characterization of hollow cone gas jets in the context of direct gas injection in internal combustion engines,” SAE International Journal of Fuels and Lubricants, vol. 11, pp. 353–377, apr 2018, doi:https://doi.org/10.4271/2018-01-0296.
[13] A. Montanaro, L. Allocca, A. De Vita, S. Ranieri, F. Duronio, and G. Meccariello, “Experimental and Numerical Characterization of High-Pressure Methane Jets for Direct Injection in Internal Combustion Engines,” in SAE Technical Paper Series, 2020, doi:10.4271/2020-01-2124.
[14] C. J. Greenshields, H. G. Weller, L. Gasparini, and J. M. Reese, “Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows,” International Journal for Numerical Methods in Fluids, Vol. 63, No. 1, pp. 1–21, 2010, doi:10.1002/fld.2069.
[15] B. van Leer, “Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme,” Journal of Computational Physics, Vol. 14, No. 4, pp. 361–370, 1974, doi:10.1016/0021-9991(74)90019-9.
[16] F. Duronio, S. Ranieri, A. D. Mascio, and A. D. Vita, “Simulation of high pressure, direct injection processes of gaseous fuels by a density-based openfoam solver,” Physics of Fluids, Vol. 33, No. 6, p. 066104, 2021, doi:10.1063/5.0054098.
[17] I. Sohrabiasl, M. Gorji-Bandpy, A. Hajialimohammadi, M.A. Mirsalim, Effect of open cell metal porous media on evolution of high pressure diesel fuel spray. Fuel, Vol. 206, pp. 133-144, 2017,  doi.org/10.1016/j.fuel.2017.06.007
[18] A. Hajialimohammadi, D. Honnery, A. Abdullah, S.M. Mirsalim, Sensitivity analysis of parameters affecting image processing of high pressure gaseous jet images, Journal of Engine Research, Vol. 33, pp. 43-52, 2014.