نقش وسایل نقلیه شخصی و تاکسی‌ها در آلودگی هوای شهر تهران، ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد دانشکده محیط‌زیست، دانشگاه تهران

2 عضو هیئت علمی دانشکده محیط‌زیست، دانشگاه تهران

3 دانشجوی دکتری دانشکده محیط‌زیست، دانشگاه تهران

4 رییس اداره کل سوخت و توسعه احتراق، مرکز تحقیقات موتور ایران خودرو

چکیده

آلودگی هوا یکی از مشکلات اصلی شهر تهران است. شناسایی نقش عوامل مؤثر در مدیریت آلودگی هوا بسیار مهم است. از نکات مهم اینکه تمام آلودگی موجود در هوای شهری ناشی از انتشار مستقیم از منابع نیست و در اثر واکنش­های جوی تشکیل می­شوند. استفاده از الگوهای آلودگی هوا در شناخت عوامل مؤثر در آلودگی هوای شهری به ما کمک می­ کند. از سامانه الگوی آلودگی هوا استفاده شد تا ابتدا الگویی مناسب تولید شود. سپس با حذف انتشار منابع انتشار تاکسی­ ها و وسایل نقلیه شخصی، سهم این دسته از منابع آلاینده با توجه به تحلیل‏ های آماری بررسی می‏شوند. سامانه الگوی استفاده شده از عملکرد قابل ­قبولی برای بررسی طرح‏ های مورد نظر با ضریب تطابق 0.84 و 0.61 بترتیب برای آلاینده ­های ازن و ذرات معلق برخوردار بود. مجموع سهم این دو منبع در شاخص کیفیت ذرات معلق 14 واحد بود. اما نقش این منابع در آلودگی ازن بسیار پیچیده شناسایی شد.

کلیدواژه‌ها


عنوان مقاله [English]

Role of passenger cars and taxies in air pollution of Tehran, Iran

نویسندگان [English]

  • Forood Azargoshasbi 1
  • Khosro Ashrafi 2
  • Hanye Sepehrian 1
  • Mohammad Ali Rajabi 3
  • Amir Hossein Parivar 4
1 MSc Student, Faculty of Environment, University of Tehran
2 Associate Professor, Faculty of Environment, University of Tehran
3 PhD Student, Faculty of Environment, University of Tehran
4 Head of Fuel & Combustion Development Department, Irankhodro Powertrain Company
چکیده [English]

Air Pollution is one of the significant problems in Tehran. Understanding the role of different sources can result in better decision-making. Some pollutions are not emitted directly from sources and are present in the atmosphere due to chemical reactions. Therefore, using air quality modeling can be beneficial to our understanding of these phenomena. An air quality modeling system was used first to model the base case of ambient pollutions. Then, the emissions of passenger cars and taxies were omitted separately to determine the role of their contribution to air pollution. The modeling results showed an acceptable performance with the index of agreement of 0.84 and 0.61 for ozone and particle matter (PM), respectively. The accumulated contribution of passenger cars and taxies to PM AQI was 14 units. However, their role in ozone formation was complex.

کلیدواژه‌ها [English]

  • Air pollution modeling
  • WRF-SMOKE-CMAQ
  • Particle matter
  • Ozone
[1] K. Ashrafi, Determining of spatial distribution patterns and temporal trends of air pollution using proper orthogonal decomposition basis functions, Atmospheric Environment, 47 (2012) 468-476
[2] M. Heger, M. Sarraf, Air Pollution in Tehran: Health Costs, Sources, and Policies, World Bank, 2018
[3] R. Bayat, K. Ashrafi, M. Shafiepour Motlagh, M.S. Hassanvand, R. Daroudi, G. Fink, N. Künzli, Health impact and related cost of ambient air pollution in Tehran, Environmental Research, 176 (2019)
[4] E. Pishgar, Z. Fanni, J. Tavakkolinia, A. Mohammadi, B. Kiani, R. Bergquist, Mortality rates due to respiratory tract diseases in Tehran, Iran during 2008–2018: a spatiotemporal, cross-sectional study, BMC Public Health, 20 (2020) 1414
[5] N.E. Selin, S. Wu, K.M. Nam, J.M. Reilly, S. Paltsev, R.G. Prinn, M.D. Webster, Global health and economic impacts of future ozone pollution, Environmental Research Letters, 4 (2009) 44014
[6] H. Zohdirad, M. Montazeri Namin, K. Ashrafi, S. Aksoyoglu, A.S.H. Prévôt, Temporal variations, regional contribution, and cluster analyses of ozone and NOx in a middle eastern megacity during summertime over 2017–2019, Environtal Science and Pollution Research (2021)
[7] H. Shahbazi, M. Reyhanian, V. Hosseini, H. Afshin, The Relative Contributions of Mobile Sources to Air Pollutant Emissions in Tehran, Iran: an Emission Inventory Approach, Emission Control Science and Technology, 2 (2016) 44–56
[8] M. Arhami, M. Z. Shahne, V. Hosseini, N. Roufigar Haghighat, A. M. Lai, J. J. Schauer, Seasonal trends in the composition and sources of PM2.5 and carbonaceous aerosol in Tehran, Iran, Environmental Pollution, 239 (2018) 69–81,
[9] N.R. Council, Rethinking the Ozone Problem in Urban and Regional Air Pollution. Washington, DC: The National Academies Press, 1991
[10] M.Z. Jacobson, Fundamentals of atmospheric modeling. Cambridge university press, 2005
[11] W.C. Skamarock, J.B. Klemp, J. Dudhia, D.O. Gill, D.M. Baker, M.G. Duda, X.-Y. Huang, W. Wang, J.G. Powers, A Description of the Advanced Research WRF Version 4, 2019
[12] I. Models, N. Features, C.S. Resources, CMAQv5.3 User Manual, 2019
[13] U. Lorenz, SMOKE 4.7: User’s Manual, 2019
[14] G. Thompson, P. R. Field, R. M. Rasmussen, and W. D. Hall, Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization, Monthly Weather Review, 136 (2008) 5095–5115
[15] E.J. Mlawer, S.J. Taubman, P.D. Brown, M.J. Iacono, S.A. Clough, Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave, Journal of Geophysical Research Atmospheres, 102 (1997) 16663–16682
[16] S.-H. Chen, W.-Y. Sun, A one-dimensional time dependent cloud model, Journal of Meteorological Society of Japan. Ser II, 80 (2002) 99–118
[17] G. Niu, Z.-L. Yang, K.E. Mitchell, F. Chen, M.B. Ek, M. Barlage, A. Kumar, K. Manning, D. Niyogi, E. Rosero, The community Noah land surface model with multiparameterization options (Noah‐MP): 1. Model description and evaluation with local‐scale measurements, Journal of  Geophysical Research Atmospheres, 116 (2011)
[18] H. Kusaka, F. Kimura, Thermal effects of urban canyon structure on the nocturnal heat island: Numerical experiment using a mesoscale model coupled with an urban canopy model, Journal of Applied Meteorology, 43 (2004) 1899–1910
[19] M. Tiedtke, A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models, Monthly Weather Review, 117 (1989) 1779–1800
[20] J. Dudhia, Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, Journal of Atmospheric Science, 46 (1989) 3077–3107
[21] S.-Y. Hong, Y. Noh, J. Dudhia, A new vertical diffusion package with an explicit treatment of entrainment processes, Monthly Weather Review, 134 (2006) 2318–2341
[22] G. A. Grell, D. Dévényi, A generalized approach to parameterizing convection combining ensemble and data assimilation techniques, Geophysical Research Letters, 29 (2002) 31–38
[23] L.K. Emmons, S. Walters, P.G. Hess, J.-F. Lamarque, G.G. Pfister, D. Fillmore, C. Granier, A. Guenther, D. Kinnison, T. Laepple, J. Orlando, X., Tie, Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geoscientific Model Development, 3 (2010)  43–67
[24] M. Crippa, G. Janssens-Maenhout, F. Dentemer, D. Guizzardi, K. Sindelarova, M. Muntean, R. Van Dingenen, C. Granier, Forty years of improvements in European air quality: regional policy-industry interactions with global impacts, Atmosphere Chemistry and Physics, 16 (2016) 3825–3841