شناسایی مشخصه‌های جرمی جسم صلب با استفاده از آنالیز مودال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی، دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی

2 عضو هیات علمی، دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی

چکیده

در انجام تحلیل ­های ارتعاشی موتور خودرو بر روی دسته­ موتورها، دانستن مشخصه ­های جرمی موتور شامل جرم، موقعیت مرکز جرم و ممان­ های اینرسی جرمی ضروری است. از آن­جا که موتور خودرو دارای شکل هندسی نسبتا پیچیده­ ای بوده و از اجزاء مختلف با چگالی ­های متفاوتی تشکیل شده است، تعیین مشخصه‌های جرمی آن، با چالش‌های بسیاری مواجه است. به منظور تعیین مشخصه­ های جرمی موتور خودرو روش­ های مختلفی وجود دارد که یکی از متداول‌ترین آن­ ها استفاده از آنالیز مودال (روش خط جرم) است. در این مقاله، ابتدا روش خط جرم برای یافتن مشخصه ­های جرمی اجسام صلب ارائه می­‌گردد. به منظور بررسی کارایی و دقت روش مذکور، مدلسازی دینامیکی یک جسم صلب با مشخصه‌های جرمی معلوم در نرم‌افزار آدامز صورت می‌گیرد. به این ترتیب که مطابق تئوری خط جرم، جسم صلب از فنربندی نرم آویزان گشته و در نقاط مختلف به آن نیرو وارد می‌شود. سپس، با انجام شبیه­ سازی­ های آدامز، مقادیر شتاب‌های متناظر در نقاط متعددی استخراج می ­گردند. در ادامه، کدنویسی روش خط جرم در نرم ­افزار متلب انجام شده و نیروهای اعمالی و شتاب‌های به دست آمده از آدامز در حوزه زمان، به عنوان ورودی به کد متلب وارد شده و با اجرای کد متلب، مشخصه­ های جرمی جسم صلب محاسبه می‌گردند. در نهایت، مقادیر مشخصه‌های جرمی به‌دست‌آمده از کد متلب با مقادیر واقعی جسم صلب شبیه‌سازی‌شده در آدامز مقایسه شده و دقت روش خط جرم در یافتن مشخصه ­های جرمی مورد ارزیابی قرار می­ گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Mass Properties Identification of a Rigid Body Using Modal Analysis

نویسندگان [English]

  • Navid Alijani 1
  • Vahid Fakhari 2
1 BSc Graduated, Faculty of Mechanical and Energy Engineering, Shahid Beheshti University
2 Faculty Member, Faculty of Mechanical and Energy Engineering, Shahid Beheshti University
چکیده [English]

In performing vibration analysis of the car engine on the engine support, it is necessary to know the mass properties of the engine including mass, position of the center of mass and mass inertia moments. Because the car engine has a relatively complex geometric shape and is composed of different components with different densities, determining its mass properties faces many challenges. There are various methods to determine the mass properties of a car engine, one of the most common of which is the use of modal analysis (mass line method). In this paper, the mass line method is presented in order to find the mass properties of rigid bodies. In order to evaluate the efficiency and accuracy of the method, dynamic modeling of a rigid body with known mass properties is performed in MSC Adams software. So according to the theory of mass line, the rigid body is hung from a soft suspension and a force is applied to it in different locations. Then, by performing Adams simulations, the corresponding acceleration values ​​are extracted at various points. After that, the mass line method is coded in MATLAB software and the applied forces and accelerations obtained from Adams in the time domain are entered as input to the MATLAB code and by executing the MATLAB code, the mass properties of the rigid body are calculated. Finally, the values ​​of the mass characteristics obtained from the MATLAB code are compared with the actual values ​​of the rigid body simulated in Adams, and the accuracy of the mass line method in finding the mass properties is evaluated.

کلیدواژه‌ها [English]

  • Modal analysis
  • Identification of mass properties
  • Mass line method
[1] Ebrahimi, M. and H. Ahmadian, Identification of rigid body properties using mass line method. The 6th Iranian Aerospace Society Conference- Feb. 2007-K.N. Toosi University of Technology, 2007.
[2] Okubo, N. Measurement of rigid body modes for dynamic design. in Proc. 2nd IMAC. 1984.
[3] Wei, Y. and J. Reis. Experimental determination of rigid body inertia properties. in Proc. of the 7th Int. Modal Analysis Conference, IMAC. 1989.
[4] Okuzumi, H., Identification of the rigid body characteristics of a power plant by using experimentally obtained transfer functions. International Journal of Vehicle Design, 1994. 15(3-5): p. 425-434.
[5] Bretl, J. and P. Conti. Rigid body mass properties from test data. in International Modal Analysis Conference, 5 th, London, England. 1987.
[6] Fregolent, A. and A. Sestieri, Identification of rigid body inertia properties from experimental data. Mechanical systems and signal processing, 1996. 10(6): p. 697-709.
[7] Fregolent, A., A. Sestieri, and M. Falzetti. Identification of rigid body inertia properties from experimental frequency response. in 10th International Modal Analysis Conference. 1992.
[8] Lee, H., Y.-B. Lee, and Y.-s. Park, Response and excitation points selection for accurate rigid-body inertia properties identification. Mechanical systems and signal processing, 1999. 13(4): p. 571-592.
[9] Almeida, R., A. Urgueira, and N. Maia. Evaluation of rigid body properties from frequency response data. in Proc. of the International Conference on Modal Analysis Noise and Vibration Engineering (ISMA 2004), Leuven, Belgium. 2004.
[10] Urgueira, A. and R. Almeida. Dynamic properties of rigid body systems from vibration measurement. in Proc. of the International Conference on Structural Dynamics Modelling, Madeira, Portugal. 2002.
[11] Urgueira, A.P. On the rigid body properties estimation from modal testing. in PROCEEDINGS-SPIE THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING. 1995. Citeseer.
[12] Almeida, R., A. Urgueira, and N. Maia, Evaluation of the performance of three different methods used in the identification of rigid body properties. Shock and Vibration, 2008. 15(3, 4): p. 467-479.
[13] Toivola, J. and O. Nuutila. Comparison of three methods for determining rigid body inertia properties from frequency response functions. in 11th International Modal Analysis Conference and Exhibit, February 1-4, Flori da, 1993. 1993.
[14] Software, S.I. (2018).