مدلسازی کریستال پلاستیسیته رچتینگ در ریزساختار آلیاژ منیزیم تحت بارگذاری تنش- کنترل سیکلیک کششی با تنش میانگین غیرصفر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشکده مهندسی مکانیک دانشگاه سمنان، سمنان، ایران و کارشناس شرکت تحقیق، طراحی و تولید موتور ایران‌خودرو (ایپکو)، تهران، ایران

2 دانشیار، دانشکده مهندسی مکانیک، دانشگاه سمنان، سمنان، ایران

چکیده

امروزه به دلیل نیاز به کاهش وزن خودرو برای کاهش مصرف سوخت و آلایندگی، یکی از گزینه­ های مدنظر طراحان استفاده از آلیاژهای سبک منیزیم، تحت بارگذاری­ های سیکلیک است. در این مقاله، با توجه به ریز ساختار آلیاژ منیزیم AZ91D و ساختار کریستالی آن، مدلی به منظور شبیه ­سازی رفتار رچتینگ این آلیاژ انتخاب شده و نسبت به داده ­های تجربی، صحه ­گذاری شد. برای این منظور، بافت کریستالوگرافی این آلیاژ با توجه به شرایط ساخت و شکل­ دهی آن، تولید شده و به مدل معرفی می­ گردد. نتایج مدلسازی نشان داد که بافت کریستالوگرافی معرفی شده برای 100 کریستال مشابه شکل­ های قطبی آن در آلیاژ منیزیم AZ91D، بعد از فرآیند نورد است. ضمنا مدل ارائه شده، توانایی پیش­ بینی تغییرشکل رچتینگ را دارد اما مقدار کرنش رچتینگ اندکی از بیشتر از داده ­های تجربی، ارزیابی شده است. همچنین، مدل کریستال پلاستیسیته می­تواند با دقت مناسبی، شبیه­ سازی مراحل اولیه و ثانویه رچتینگ، اثرات سخت­ شوندگی، تنش میانگین و دامنه را نشان دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Ratcheting crystal plasticity modeling in microstructure of magnesium alloy under stress-controlled cyclic tensile loading with non-zero mean stress

نویسندگان [English]

  • Adel Basiri 1
  • Mohammad Azadi 2
  • Ahmad Ghasemi-Ghalebahman 2
1 MSc, Faculty of Mechanical Engineering, Semnan University, Semnan, Iran and Expert in Irankhodro Powertrain Company (IPCO), Tehran, Iran
2 Associate Professor, Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
چکیده [English]

Todays, the requirement of lowering the vehicle weight for the reduction of the fuel consumption and emissions, one of the methods considered by designers is to use the ligh magnesium alloy under cylclic loadings. In this article, considering the microstructure of the AZ91D magnesium alloy, its crystalline structure, a model for predicting the ratcheting behavior of this alloy was adapted and verified based on experimental data. The crystallographic texture of this alloy will be introduced into the model respecting the manufacturing process of the shaping conditions. The proposed model, in order to simulate the ratcheting deformation, had an acceptable accuracy. However, the values of the ratcheting strain were over-predicted. Moreover, the crystal plasticity model could simulate the first and second stages of ratcheting, hardening effects, mean stress, and stress amplitude, with a higher accuracy.

کلیدواژه‌ها [English]

  • Microstructural model
  • Crystal plasticity
  • Magnesium alloy
  • fatigue
  • Ratcheting
[1] T.J. Smith, H.J. Maier, H. Sehitoglu, F. Fleury, J. Allison, Modeling high-temperature stress-strain behavior of cast aluminum alloy, Metallurgical and Materials Transactions A, Vol. 30, pp. 133-146, 1999. https://doi.org/10.1007/s11661-999-0201-y
[2] H. Friedrich, S. Schumann, Research for a “new age of magnesium” in the automotive industry, Journal of Materials Processing Technology, Vol. 23, pp. 276-281, 2001. https://doi.org/10.1016/S0924-0136(01)00780-4
[3] M. Azadi, Effects of strain rate and mean strain on cyclic behavior of aluminum alloys under isothermal and thermo-mechanical fatigue loadings, International Journal of Fatigue, Vol. 47, pp. 148-153, 2013. https://doi.org/10.1016/j.ijfatigue.2012.08.005
[4] D.L. McDowell, Visco-plasticity of heterogeneous metallic materials, Materials Science and Engineering R, Vol. 62, No. 3, pp. 67-123, 2008. https://doi.org/10.1016/j.mser.2008.04.003
[5] H.J. Panchal, S.R. Kalidindi, D.L. McDowell, Key computational modeling issues in integrated computational materials engineering, Computer-Aided Design, Vol. 45, No. 1, pp. 4-25, 2013. https://doi.org/10.1016/j.cad.2012.06.006
[6] G. Kang, Ratchetting: Recent progresses in phenomenon observation, constitutive modeling and application, International Journal of Fatigue, Vol. 30, No. 8, pp. 1448-1472, 2018. https://doi.org/10.1016/j.ijfatigue.2007.10.002
[7] M. Lugo, J.B. Jordon, K.N. Solanki, L.G. Hector, J.D. Bernard, A.A. Luo, Role of different material processing methods on the fatigue behavior of an AZ31 magnesium alloy, International Journal of Fatigue, Vol. 52, pp. 131-143, 2013. https://doi.org/10.1016/j.ijfatigue.2013.02.017
[8] S. Balasubramanian, L. Anand, Plasticity of initially textured hexagonal polycrystals at high homologous temperatures: Application to titanium, Acta Materialia, Vol. 50, No. 1, pp. 133-148, 2002. https://doi.org/10.1016/S1359-6454(01)00326-3
[9] F. Kiarasi, M. Babaei, M.O. Bidgoli, K.R. Kashyzadeh, K. Asemi, Mechanical characterization and creep strengthening of AZ91 magnesium alloy by addition of yttrium oxide nanoparticles, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, Volume 236, No. 8, pp. 1489-1500, 2022. https://doi.org/10.1177/14644207211073499
[10] M. Huppmann, M. Lentz, S. Chedid, W. Reimers, Analyses of deformation twinning in the extruded magnesium alloy AZ31 after compressive and cyclic loading, Journal of Materials Science, Vol. 46, pp. 938-950, 2011. https://doi.org/10.1007/s10853-010-4838-0
[11] Y.C. Lin, X. Chen, Z. Liu, J. Chen, Investigation of uniaxial low-cycle fatigue failure behavior of hot-rolled AZ91 magnesium alloy, International Journal of Fatigue, Vol. 48, pp. 122-132, 2013. https://doi.org/10.1016/j.ijfatigue.2012.10.010
[12] G. Kang, C. Yu, Y. Liu, G. Quan, Uniaxial ratchetting of extruded AZ31 magnesium alloy: Effect of mean stress, Materials Science and Engineering A, Vol. 607, pp. 318-327, 2017. https://doi.org/10.1016/j.msea.2014.04.023
[13] G. Cailletaud, K. Sai, A polycrystalline model for the description of ratchetting: Effect of intergranular and intragranular hardening, Materials Science and Engineering A, Vol. 480, Nos. 1-2, pp. 24-39, 2008. https://doi.org/10.1016/j.msea.2007.06.071
[14] G. Cailletaud, P. Pilvin, Using of polycrystalline models for finite element computation, Review European Finite Element, Vol. 3, No. 4, pp. 515-541, 1994. https://doi.org/10.1080/12506559.1994.10511147 
[15] C. Yu, G. Kang, Q. Kan, Crystal plasticity based constitutive model for uniaxial ratcheting of polycrystalline magnesium alloy, Computational Materials Science, Vol. 84, pp. 63-73, 2014. https://doi.org/10.1016/j.commatsci.2013.11.054
[16] Q. Yu, J. Zhang, Y. Jiang, Direct observation of twinning-detwinning-retwinning on magnesium single crystal subjected to strain-controlled cyclic tension-compression in [0 0 0 1] direction, Philosophical Magazine Letters, Vol. 19, No. 12, pp.  757-765, 2011. https://doi.org/10.1080/09500839.2011.617713
[17] Y.C. Lin, X.M. Chen, G. Chen, Uniaxial ratcheting and low-cycle fatigue failure behaviors of AZ91D magnesium alloy under cyclic tension deformation, Journal of Alloys and Compounds, Vol. 509, pp. 6838-6843, 2011. https://doi.org/10.1016/j.jallcom.2011.03.129
[18] Z. Yan, D. Wang, X. He, W. Wang, H. Zhang, P. Dong, C. Li, Y. Li, J. Zhou, Z. Liu, L. Sun, Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect, Materials Science and Engineering A, Vol. 723, pp. 212-220, 2018. https://doi.org/10.1016/j.msea.2018.03.023
[19] L. Lin, R.K. Mishra, A.K. Sachdev, Texture modification during extrusion of some Mg alloys, Metallurgical and Materials Transactions A, Vol. 43, pp. 2148-2157, 2012. https://doi.org/10.1007/s11661-011-0994-3
[20] W. Wang, J. Liu, A.K. Soh, Crystal plasticity modeling of strain rate and temperature sensitivities in magnesium, Acta Mechanica, Vol. 230, No. 6, pp.  2071-2086, 2019. https://doi.org/10.1007/s00707-019-2374-9
[21] M.R. Yaghoobi, G.Z. Voyiadjis, V. Sundararaghavan, Crystal plasticity simulation of magnesium and its alloys: A review of recent advances, Crystals, Vol. 11, No. 4, Article No. 435, 2021. https://doi.org/10.3390/cryst11040435
[22] A. Basiri, F. Zairi, M. Azadi, A. Ghasemi-Ghalebahman, Micromechanical constitutive modeling of tensile and cyclic behaviors of nano-clay reinforced metal matrix nanocomposites, Mechanics of Materials, Vol. 168, Article No. 104280, 2022. https://doi.org/10.1016/j.mechmat.2022.104280