شبیه‌سازی و تایید مدل ترمودینامیکی چندمنطقه‌ای موتور اشتعال جرقه‌ای ترکیب‌سوز بنزین-گازطبیعی با پیش‌بینی آلاینده اکسیدنیتروژن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 استاد، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

امروزه می­توان به‌کمک مدل­های شبیه­سازی، عملکرد موتور را با دقت بسیار مطلوبی مدل­ریزی نموده و راه‌کارهایی را در راستای عملکرد موتور از جمله ترکیب‌سوزکردن آن‌ها بررسی کرد. در پژوهش حاضر یک کد شبیه‌ساز ورودی ترمودینامیکی چندمنطقه‌ای ترکیب‌سوز بنزین-گازطبیعی با زیرمدل نشتی و مکانیزم پیش­بینی آلاینده NO توسعه داده شد. سپس از یک موتور تک‌سیلندر پژوهشی، داده­های تجربی سیکل‌هایی با تکنیک پرش­جرقه در نسبت تراکم 10 برای ترکیب‌های100، 90، 75 و 60 درصد بنزین و مابقی گازطبیعی استخراج شد. از نتایج تجربی به‌دست‌آمده با تکنیک پرش­جرقه، دو مجموعه 200 سیکلی موتورگردانی و احتراقی بدون گازهای باقیمانده از سیکل قبلی برای اهداف تأیید کد شبیه­ساز فراهم شد. در حالت موتورگردانی نتایج کد شبیه‌ساز مجهز به زیرمدل نشتی با نتایج تجربی فشار-زاویه میل‌لنگ موتورگردانی مقایسه شد. سپس در حالت احتراقی نتایج کد شبیه‌ساز با میانگین داده‌های تجربی فشار-زاویه میل‌لنگ مجموعه احتراقی در هر ترکیب مقایسه شد و با خطای کم‌تر از چهار درصد عملکرد کد شبیه­ساز تأیید شد. هم‌چنین هر دو نتایج مدل شبیه­سازی و تجربی نشان دادند که با افزایش گازطبیعی در ترکیب، imep < /span> کاهش یافته است. در نهایت زیرمدل پیش­بینی NO نشان داد که با افزایش کسر گازطبیعی در سوخت ترکیبی، کسر NO تولیدی کاهش یافته است.

کلیدواژه‌ها


عنوان مقاله [English]

Simulating and Validating a multi-zone thermodynamic-model for gasoline-NG dual-fuel SI engines and predicting NO emission

نویسندگان [English]

  • Mehrdad Sarabi 1
  • Ebrahim Abdi Aghdam 2
1 Ph. D., Mechanical Engineering Department, Faculty of Engineering, Mohaghegh Ardabili University, Ardabil, Iran
2 Professor, Mechanical Engineering Department, Faculty of Engineering, Mohaghegh Ardabili University, Ardabil, Iran
چکیده [English]

Today, with the help of simulation models, engine performance can be modelled with a high level of precision, and thereby various strategies for the improvement of engine performance including the use of dual-fuel mixtures can be investigated. In the present study, a multi-zone thermodynamic simulation-code in Gasoline-Natural Gas (NG) mode with a Blow-by sub-model and a NO predicting-mechanism was developed. Then using a single-cylinder research-engine, experimental data were collected from various cycles via the use of skip < /span>-fire technique at the compression ratio of 10 for the dual-fuel mixtures of 100%, 90%, 75% and 60% Gasoline and the rest NG. From the obtained experimental data, two 200-cycle series of motoring and combustion without residual-gases were provided to verify the simulation code. In the motoring mode, the results of the simulating code equipped with Blow-by sub-model were compared with the experimental results. Then in the combustion mode, the results of the simulation code were compared with the average of pressure-crank angle experimental data in each dual-fuel mode. The performance of the simulation code was confirmed with an error of less than 4%. Finally, the sub-model for the prediction of NO emission revealed that NO emission decreased with the increase of NG fraction. 

کلیدواژه‌ها [English]

  • Blow-by
  • Dual-Fuel
  • Multi Zone Model
  • NO emission
  • SI Engine
[1] Abdi Aghdam, M. Sarabi, M. Mehrbod Khomeyrani. Experimental study of laminar burning velocity for dual fuel (Gasoline-NG)-Air mixture using pressure record in a spherical combustion bomb at higher primary pressure. Fuel and Combustion; 11(1): 121-134, 2018
[2] Shamekhi, N. Khatibzadeh, and H. Shamekhi. "Performance and emissions characteristics investigation of a bi-fuel SI engine fuelled by CNG and gasoline." Internal Combustion Engine Division Spring Technical Conference. Vol. 42061. 2006
[3] MARDI, M. ABDOLALIPOURADL, SH. KHALILARYA, The Effect of Exhaust Gas Recirculation on Performance and Emissions of a SI Engine Fuelled with Ethanol-gasoline Blends. INTERNATIONAL JOURNAL OF ENGINEERING, 28.1: 130-135, 2015
[4] B. HEYWOOD, Internal combustion engine fundamentals, Mcgraw-hill New York, 1988.
[5] Abdi Aghdam, B. Farhang, M. Sarabi, Experimental study of a spark ignition single-cylinder research engine exhaust emissions in gasoline and natural gas fuel cases. JER, 39 (39) :49-55, 2015
[6] Musthafah Mohd., M.S. Ali, M.A. Salim, A. Rosli, A. Bakar, A.M. Fudhail, M.Z. Hassan, M.S. Abdul Muhaimin. "Performance analysis of a spark ignition engine using compressed natural gas (CNG) as fuel." Energy Procedia 68: 355-362,‏ 2015
[7] Suzuki, M. Nemoto, K. Machida, Model-based calibration process for producing optimal spark advance in a gasoline engine equipped with a variable valve train, 0148-7191, SAE Technical Paper, 2006
[8] Verhelst, C. Sheppard, Multi-zone thermodynamic modelling of spark-ignition engine combustion–an overview, Energy Conversion and management, 50(5) 1326-1335, 2009
[9] Patterson, G.J. VAN WYLEN, A digital computer simulation for spark-ignited engine cycles, 0148-7191, SAE Technical Paper, 1963
[10] C. Blizard, J.C. Keck, Experimental and theoretical investigation of turbulent burning model for internal combustion engines, 0148-7191, SAE Technical Paper, 1974
[11] A. Aghdam, M. Kabir, Validation of a blowby model using experimental results in motoring condition with the change of compression ratio and engine speed, Experimental Thermal and Fluid Science, 34(2) 197-209, 2010
[12] Namazian, J.B. Heywood, Flow in the piston-cylinder-ring crevices of a spark-ignition engine: Effect on hydrocarbon emissions, efficiency and power, SAE transactions, 261-288, 1982
[13] Abdi aghdam, A. Zamzam, Study of the Effect of Engine Speed and the Operating life on Blowby in Fueled Motoring for XU7JP/L3 Engine. Journal of Mechanical Engineering, 48(4): 209-218, 2019
[14] J. Tabaczynski, C.R. Ferguson, K. Radhakrishnan, A turbulent entrainment model for spark-ignition engine combustion, SAE transactions, 2414-2433, 1977
[15] Dashti, A. Hamidi, A. Mozafari, Thermodynamic Simulation of Spark Ignition Internal Combustion Engine Operation with Blends of Gasoline and CNG with Experimental Verification. JER; 23 (23) :32-44, 2011
[16] Ma, Y. Wang, M. Wang, H. Liu, J. Wang, S. Ding, S. Zhao, Development and validation of a quasi-dimensional combustion model for SI engines fuelled by HCNG with variable hydrogen fractions, International journal of hydrogen energy, 33(18) 4863-4875, 2008
[17] Vancoillie, L. Sileghem, S. Verhelst, Development and validation of a quasi-dimensional model for methanol and ethanol fueled SI engines, Applied energy, 132 412-425, 2014
[18] Baniasadi, H. Abbasi Varzaneh, Energy and Exergy Analyses of the Performance of a Spark Ignition Engine Using Two-Zone Combustion Model. Amirkabir Journal of Mechanical Engineering, 51(4): 61-70, 2019
[19] Sarabi, E. Abdi Aghdam, Single-Cylinder SI Engine Performance in Dual-Fuel (Gasoline-NG) Mode with Gasoline Dominant Fuel under Stoichiometric Conditions. Modares Mechanical Engineering. 20 (2) :287-295, 2020
[20] Sarabi, E. Abdi Aghdam, Experimental analysis of in-cylinder combustion characteristics and exhaust gas emissions of gasoline–natural gas dual-fuel combinations in a SI engine, Journal of Thermal Analysis and Calorimetry, 113:1-14, 2019
[21] Metghalchi, Laminar burning velocity of isooctane-air, methane-air, and methanol-air mixtures at high temperature and pressure, Massachusetts Institute of Technology, 1977
[22] Metghalchi, J.C. Keck, Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature, Combustion and flame, 48: 191-210,1982
[23] Liao, D. Jiang, Q. Cheng, Determination of laminar burning velocities for natural gas, Fuel, 83(9) 1247-1250, 2004
[24] B. Han, Y.J. Chung, S. Lee, Effect of engine variables on the turbulent flow of a spark ignition engine, Ksme Journal, 9(4) 492-501, 1995
[25] Atashkari, Experimental Study of Flow and Turbulence in a V-flame Burner and a SI Engine, Ph. D. thesis, Department of Mech. Eng., University of Leeds, 1997
[26] Damköhler, Der einfluss der turbulenz auf die flammengeschwindigkeit in gasgemischen, Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 46(11) 601-626, 1940
[27] Zimont, Theory of turbulent combustion of a homogeneous fuel mixture at high Reynolds numbers, Combustion, Explosion and Shock Waves, 15(3) 305-311, 1979
[28] Ö.L. Gülder, Turbulent premixed flame propagation models for different combustion regimes, in: Symposium (International) on Combustion, Elsevier, pp. 743-750, 1991
[29] Abdi Aghdam, Improvement and validation of a thermodynamic SI engine simulation code, University of Leeds, 2003
[30] Annand, Thermodynamics, F.M. Group, Heat transfer in the cylinders of reciprocating internal combustion engines, Proceedings of the Institution of Mechanical Engineers, 177(1) 973-996, 1963
[31] Abdi Aghdam. Wall effect on determination of laminar burning velocity in a constant volume bomb using a quasi-dimensional model. Applied Mathematical Modelling, 38(24), 5811-5821, 2014
[32] Sarabi, Simulation and development, and validation of dual-fuel (Gasoline-Natural gas) thermodynamic multi zone SI engine code using experimental results obtained from CT300 research engine, University of Mohaghegh Ardabili, PhD thesis, Jan. 2020
[33] Bradley, R. Hicks, M. Lawes, C. Sheppard, R. Woolley, The measurement of laminar burning velocities and Markstein numbers for iso-octane–air and iso-octane–n-heptane–air mixtures at elevated temperatures and pressures in an explosion bomb, Combustion and flame, 115(1-2) 126-144, 1998
[34] Merdjani, C. Sheppard, Gasoline engine cycle simulation using the Leeds turbulent burning velocity correlations, 0148-7191, SAE Technical Paper, 1993
[35] Asgari O, SK Hannani, R Ebrahimi. Improvement and experimental validation of a multi-zone model for combustion and NO emissions in CNG fueled spark ignition engine. Journal of mechanical science and technology. 26(4):1205-12, 2012
[36] ZEL’DOVICH, YB, RY SADOVNIKOV, D Frankkamenetsky. Nitrogen Oxidation in Combustion (In Russian). USSR Acad. Sci, 1947
[37] Ferguson CR, AT Kirkpatrick. Internal combustion engines: applied thermosciences. John Wiley & Sons, 2015
[38] Sarabi M, E. Abdi Aghdam E, S.K. Yekani, The Effect of Burned Residual Gases On Gasoline-NG Dual-Fuel Engine Combustion Performance with Skip-Fire Technique. JER. 63 (63) :3-11, 2021
[39] Abdi Aghdam, M. Sarabi, A. Ghanbari, Comparison of the performance and exhaust gas emission of a gasoline-NG dual fuel SI engine with single fuel gasoline and NG case, 11th International Conference on IC Engines, Tehran, Iran, 2020
[40] Abdi Aghdam, M. Sarabi, Calibration of Gasoline-NG Dual-Fuel SI Engine Injectors and Comparison of the Performance and Emission of a Dual-Fuel and Single Fuel Cases. Journal of Mechanical Engineering, 52(1): 109-117, 2022
[41] Robinet, P. Higelin, Crossed Study of Residual Gas Rate-Firing Device for a Better Understanding of SI Engines Cycle-to-Cycle Variations, 0148-7191, SAE Technical Paper, 1998
[42] K. Yekani, E. Abdi Aghdam, M. Sarabi, An Experimental Investigation of Knock Limit, Performance and Economic Parameters in a Gasoline-Natural Gas Dual Fuel Spark-Ignition Engine at the Compression Ratio of 10. Journal of Energy Management and Technology, 2022, doi: 10.22109/jemt.2022.320776.1358
[43] M. Rassweiler, L. Withrow, Motion pictures of engine flames correlated with pressure cards, Sae transactions, 185-204, 1938
[44] Sarabi, E. Abdi Aghdam, Combustion study of gasoline-natural gas combustion mode of a single-cylinder spark ignition research engine at 1500rpm, The 8th Fuel and Combustion Conference of Iran, Tabriz, 2020