بررسی تجربی اثر چگالی شار مغناطیسی بر مصرف سوخت و آلاینده‌‎ها در موتور دیزل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مکانیک بیوسیستم، دانشگاه تربیت مدرس، تهران، ایران

2 کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد الیگودرز، لرستان، ایران

3 کارشناسی ارشد، گروه مهندسی مکانیک بیوسیستم، دانشگاه تربیت مدرس، تهران، ایران

4 دانشجوی دکتری، گروه مهندسی مکانیک بیوسیستم، دانشگاه تهران، تهران، ایران

چکیده

هدف از این مطالعه بررسی اثر چگالی شار مغناطیسی (6000 گاوس) بر مصرف سوخت و آلاینده­ها در موتور دیزل بود. آزمایشات در فواصل مختلف آهنربا در مسیر سوخت (20، 40 و 60 سانتی­متر) و سرعت‌‎های مختلف موتور (1800، 2100، 2400 و 2700 د.د.د) انجام شد. کربن مونواکسید (CO)، هیدروکربن نسوخته (UHC)، دی‌اکسید کربن (CO2)، نیتروژن اکسید (NOX) و مصرف سوخت به عنوان صفات مورد بررسی انتخاب شدند. طبق نتایج به دست آمده بیشترین کاهش کربن مونواکسید در ترکیب سطوح 1800 د.د.د و 40 سانتی‌‎متر مشاهده شد که به میزان 67  درصد در مقایسه با نمونه شاهد کاهش پیدا کرد. کمترین مقدار هیدروکربن نسوخته در سرعت 1800 و فاصله 40 سانتی‌متری آهنربا با مقدار 33/131 مشاهده شد. همچنین بیشترین مقدار اکسید نیتروژن در ترکیبات سطوح 1800-20، 1800-40، 2100-40 به ترتیب با مقدار 62، 59، 57 و 56 ppm مشاهده شد. میزان مصرف سوخت در بیشترین سرعت موتور و در فواصل 20، 40 و 60 سانتی‌متری آهنربا از موتور، به ترتیب 023/3، 23/3 و 25/3 لیتر بر ساعت مشاهده شد که این میزان به ترتیب 12، 1/6 و 52/5 درصد در مقایسه با نمونه شاهد کاهش یافت. روش سطح پاسخ برای بهینه‌‎کردن شرایط آزمایش به کار گرفته شد. طبق نتایج به دست آمده شرایط بهینه در دور موتور 1800 د.د.د و فاصله آهنربا از مسیر سوخت 37 سانتی‌متر به دست آمد. در این شرایط بهینه، مقادیر کربن مونواکسید، هیدروکربن نسوخته، کربن دی‌اکسید، نیتروژن اکسید و مصرف سوخت به ترتیب 49/0 درصد حجمی، 128/45ppm ، 96/1 درصد حجمی، 61/3 ppm و 92/1  لیتر بر ساعت با مطلوبیت  7/0 به دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental study of the effect of magnetic flux density on fuel consumption and emissions in diesel engine

نویسندگان [English]

  • Edres Rahmati 1
  • Nosratollah Sarlak 2
  • Hadi Zarei 3
  • Adib Souzani 4
1 Biosystem Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
2 Mechanical Engineering, Aligoodarz University, Lorestan, Iran
3 Biosystem Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
4 Biosystem Mechanical Engineering, Tehran University, Tehran, Iran
چکیده [English]

The aim of this study was to investigate the effect of magnetic flux density (6000 Gauss) on diesel engine fuel consumption and emissions. Experiments were performed at different distances with respect to the magnet in the fuel line (20, 40 and 60 cm) and at different engine speeds (1800, 2100, 2400 and 2700 rpm). We then selected carbon monoxide (CO), unburned hydrocarbons (UHC), carbon dioxide (CO2), nitrogen oxide (NOX) and fuel consumption as our study traits. According to the findings, the levels combination of 1800 rpm and 40 cm resulted in the greatest reduction of carbon monoxide, which was declined by 67 % compared to the control sample. The least amount of unburned hydrocarbon was observed at 1800 speed and 40 cm distance from the magnet with a value of 131.33. Moreover, the highest amount of nitrogen oxide was found in the 1800-20, 1800-40, 2100-40 levels compounds with 62, 59, 57 and 56 ppm, respectively. Fuel consumption was 3.023, 3.23, and 3.25 (Lit/h) at the maximum engine speed and distances of 20, 40, and 60 cm from the magnet, correspondingly; and dropped by 12, 6.1, and 5.52% compared to the control sample. We recruited response surface methodology to optimize process conditions. Based on the results, the optimal conditions were obtained at 1800 rpm and a distance of 37 cm of magnet on the fuel line. Under these optimal conditions, the amount of carbon monoxide, unburned hydrocarbons, carbon dioxide, nitrogen oxide and fuel consumption were 0.49%V, 128.45 ppm, 1.96%V, 61.3 ppm, and 1.92 (Lit/h) with desirability of 0.7, respectively.

کلیدواژه‌ها [English]

  • Magnetic experiment
  • Compression Ignition Engine
  • Fuel Consumption
  • emissions
  • Optimization
[1] T.H. Nufus, R.P.A. Setiawan, W. Hermawan, A.H. Tambunan, Characterization of biodiesel fuel and its blend after electromagnetic exposure, Cogent Engineering,  Vol. 4, No. 1, pp. 1362839, 2017
[2] S.T. Revankar, Nuclear hydrogen production, Storage and hybridization of nuclear energy, Elsevier, pp. 49-117, 2019
[3] M. Sekar, T. Mathimani, A. Alagumalai, N.T.L. Chi, P.A. Duc, S.K. Bhatia, K. Brindhadevi, A. Pugazhendhi, A review on the pyrolysis of algal biomass for biochar and bio-oil–Bottlenecks and scope, Fuel, Vol. 283, pp. 119190, 2021
[4] M. Vochozka, Z. Rowland, P. Suler, J. Marousek, The influence of the international price of oil on the value of the EUR/USD exchange rate, Journal of Competitiveness, Vol. 12, No. 2, pp. 167-190, 2020
[5] B. Gopalakrishnan, N. Khanna, D. Das, Dark-Fermentative Biohydrogen Production, Biohydrogen, pp. 79-122, 2019
[6] Anonymous, International Energy Outlook, https://www.eia.gov/outlooks/ieo/, 2017
[7] B. Devi, S. Venkatesh, R. Vimal, T. Praveenkumar, Influence of high oxygenated biofuels on micro-gas turbine engine for reduced emission, Aircraft Engineering and Aerospace Technology,  Vol. 93 No. 3, pp. 508-513, 2020
[8] T. Praveenkumar, P. Velusamy, D. Balamoorthy, Pyrolysis oil for diesel engines from plastic solid waste: a performance, combustion and emission study, International Journal of Ambient Energy, Vol. 43, No. 1, pp. 3223-3227, 2022
[9] A. Anderson, R. Chandralingam, T. PraveenKumar, Impact of COVID-19 pandemic on plastic surge and environmental effects, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects pp. 1-7, 2021
[10] X. Zhang, R. Yang, P. Anburajan, Q. Van Le, M. Alsehli, C. Xia, K. Brindhadevi, Assessment of hydrogen and nanoparticles blended biodiesel on the diesel engine performance and emission characteristics, Fuel, Vol. 307, pp. 121780, 2022
[11] İ.A. Reşitoğlu, K. Altinişik, A. Keskin, The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems, Clean Technologies and Environmental Policy, Vol. 17, No. 1, pp. 15-27, 2015
[12] E. Jiaqiang, G. Liu, Z. Zhang, D. Han, J. Chen, K. Wei, J. Gong, Z. Yin, Effect analysis on cold starting performance enhancement of a diesel engine fueled with biodiesel fuel based on an improved thermodynamic model, Applied Energy,  Vol. 243, pp. 321-335, 2019
[13] Z. Zhang, J. Ye, D. Tan, Z. Feng, J. Luo, Y. Tan, Y. Huang, The effects of Fe2O3 based DOC and SCR catalyst on the combustion and emission characteristics of a diesel engine fueled with biodiesel, Fuel,  Vol. 290, pp. 120039, 2021
[14] G. Pramodkumar, M. Naidu, J. Sandeep, R. Vasupalli, P. Lade, Effect of Magnetic Field on the Emissions of Single Cylinder Four Stroke Petrol Engine, Advances in Automobile Engineering, Vol. 6, No. 4, pp. 1-4, 2017
[15] M. Burr, C. Gregory, Vehicular exhaust, Encylopedia Environ Health, Vol. 49, pp. 645-563, 2011
[16] Y. Al Ali, M. Hrairi, I. Al Kattan, Potential for improving vehicle fuel efficiency and reducing the environmental pollution via fuel ionization, International Journal of Environmental Science and Technology,  Vol. 9, No. 3, pp. 495-502, 2012
[17] M. Zhou, H. Jin, W. Wang, A review of vehicle fuel consumption models to evaluate eco-driving and eco-routing, Transportation Research Part D: Transport and Environment, Vol. 49, pp. 203-218, 2016
[18] K. Chaware, Review on effect of fuel magnetism by varying intensity on performance and emission of single cylinder four stroke diesel engine, International Journal of Engineering and General Science, Vol. 3, No. 1, pp. 1174-1178, 2015
[19] A.S. Faris, S.K. Al-Naseri, N. Jamal, R. Isse, M. Abed, Z. Fouad, A. Kazim, N. Reheem, A. Chaloob, H. Mohammad, Effects of magnetic field on fuel consumption and exhaust emissions in two-stroke engine, Energy Procedia, Vol. 18, pp. 327-338, 2012
[20] P. Govindasamy, S. Dhandapani, Experimental investigation of cyclic variation of combustion parameters in catalytically activated and magnetically energized two-stroke SI engine, Journal of Energy & Environment, Vol. 6, No. 4, pp. 561-569, 2007
[21]   W.W. Frenier, M. Ziauddin, R. Venkatesan, Organic deposits in oil and gas production, pp.1- 362, 2010
[22] C. Okoronkwo, C. Nwachukwu, L. Ngozi–Olehi, J. Igbokwe, The effect of electromagnetic flux density on the ionization and the combustion of fuel (an economy design project), American Journal of Scientific and Industrial Research,  Vol. 1, No. 3, pp. 527-531, 2010
[23] İ. Eren, F. Kaymak-Ertekin, Optimization of osmotic dehydration of potato using response surface methodology, Journal of food engineering, Vol. 79, No. 1, pp. 344-352, 2007
[24] A. Ramadhas, C. Muraleedharan, S. Jayaraj, Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil, Renewable energy, Vol. 30, No. 12, pp. 1789-1800, 2005
[25] A. Shirneshan, HC, CO, CO2 and NOx emission evaluation of a diesel engine fueled with waste frying oil methyl ester, Procedia-Social and Behavioral Sciences, Vol. 75, pp. 292-297, 2013
[26] G. Ramakrishnan, P. Krishnan, S. Rathinam, Y. Devarajan, Role of nano-additive blended biodiesel on emission characteristics of the research diesel engine, International Journal of Green Energy, Vol. 16, No. 6, pp. 435-451, 2019
[27] P.K. Chaurasiya, S.K. Singh, R. Dwivedi, R.V. Choudri, Combustion and emission characteristics of diesel fuel blended with raw jatropha, soybean and waste cooking oils, Vol. 5, No. 5, pp. e01564, 2019
[28] B.K. Selvan, S. Das, M. Chandrasekar, R. Girija, S.J. Vennison, N. Jaya, P. Saravanan, M. Rajasimman, Y. Vasseghian, N. Rajamohan, Utilization of biodiesel blended fuel in a diesel engine–Combustion engine performance and emission characteristics study, Fuel, Vol. 311, pp. 122621, 2022
[29] P. Govindasamy, S. Dhandapani, Experimental investigation of cyclic variation of combustion parameters in catalytically activated and magnetically energized two-stroke SI engine, Journal of Energy & Environment, Vol. 6, No. 4, pp. 561-569, 2007
[30] P.M. Patel, G.P. Rathod, T.M. Patel, Effect of magnetic field on performance and emission of single cylinder four stroke diesel engine, IOSR Journal of Engineering,  Vol. 4, No. 5, pp. 28-34, 2014
[31] H. Venu, V. Madhavan, Influence of diethyl ether (DEE) addition in ethanol-biodiesel-diesel (EBD) and methanol-biodiesel-diesel (MBD) blends in a diesel engine, Fuel, Vol. 189, pp. 377-390, 2017
[32] A. Calam, B. Aydoğan, S. Halis, The comparison of combustion, engine performance and emission characteristics of ethanol, methanol, fusel oil, butanol, isopropanol and naphtha with n-heptane blends on HCCI engine, Fuel,  Vol. 266, pp. 117071, 2020
[33] M. Hazrat, M.G. Rasul, M. Khan, N. Ashwath, T. Rufford, Emission characteristics of waste tallow and waste cooking oil based ternary biodiesel fuels, Energy Procedia,  Vol. 160, pp. 842-847, 2019
[34]  M. Yan, H. Su, D. Hantoko, E. Kanchanatip, F.B.S. Hamid, S. Zhang, G. Wang, Z. Xu, Experimental study on the energy conversion of food waste via supercritical water gasification: improvement of hydrogen production, International Journal of Hydrogen Energy,  Vol. 44, No. 10, pp. 4664-4673, 2019
[35] X. Zhang, R. Yang, P. Anburajan, Q.V. Le, M. Alsehli, C. Xia, K. Brindhadevi, Assessment of hydrogen and nanoparticles blended biodiesel on the diesel engine performance and emission characteristics, Fuel,  Vol. 307, pp. 121780, 2022
[36]  S.K. Nayak, A.T. Hoang, S. Nižetić, X.P. Nguyen, T.H. Le, Effects of advanced injection timing and inducted gaseous fuel on performance, combustion and emission characteristics of a diesel engine operated in dual-fuel mode, Fuel, Vol. 310, pp. 122232, 2022
[37] P. Shrivastava, T.N. Verma, A. Pugazhendhi, An experimental evaluation of engine performance and emisssion characteristics of CI engine operated with Roselle and Karanja biodiesel, Fuel,  Vol. 254, pp. 115652, 2019
[38] S.S. Bhurat, H. Sharma, A.K. Jha, K.K. Dixit, P. Shukla, R. Kunwer, Magnetization of diesel fuel for compression ignition engine to enhance efficiency and emissions, International Journal of Applied Engineering Research,  Vol. 13, No. 6, pp. 341-347, 2018
[39]  S. Javed, R.U. Baig, Y.S. Murthy, Study on noise in a hydrogen dual-fuelled zinc-oxide nanoparticle blended biodiesel engine and the development of an artificial neural network model, Energy,  Vol. 160, pp. 774-782, 2018
[40]   M. Ozcanli, M.A. Akar, A. Calik, H. Serin, Using HHO (Hydroxy) and hydrogen enriched castor oil biodiesel in compression ignition engine, International Journal of Hydrogen Energy,  Vol. 42, No. 36, pp. 23366-23372, 2017
[41] S.K. Hoekman, C. Robbins, Review of the effects of biodiesel on NOx emissions, Fuel Processing Technology, Vol. 96, pp. 237-249, 2012
[42] A.T. Hoang, A.I. Ölçer, S. Nižetić, Prospective review on the application of biofuel 2, 5-dimethylfuran to diesel engine, Journal of the Energy Institute, Vol. 94, pp. 360-384, 2021
[43] J.A. Yamin, Performance comparison of a CI engine using diesel and biodiesel fuels and a magnetic fuel conditioner, Biofuels,  Vol. 9, No. 6, pp. 729-738, 2018
[44] A.R. Attar, P. Tipole, V. Bhojwani, S. Deshmukh, Effect of magnetic field strength on hydrocarbon fuel viscosity and engine performance, International Journal of Mechanical Engineering and Computer Applications, Vol. 1, No. 7, pp. 94-98, 2013