مدلسازی و شبیه سازی پیل سوختی غشا پلیمری مورد استفاده در خودرو پیل سوختی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری مهندسی مکانیک بیوسیستم، دانشگاه تهران، ایران

2 استاد گروه فنی و کشاورزی، دانشگاه تهران، ایران

3 استادیار گروه شیمی کاربردی، دانشگاه ارومیه، ایران

چکیده

پیل سوختی بهترین پیشنهاد برای جایگزینی موتورهای درونسوز می­باشد. سیستم­های پیل سوختی هیچ گونه آلودگی نداشته و اجزای متحرک ندارند. بازده پیل­های سوختی بیش از سه برابر موتورهای درونسوز است. مدلسازی رفتار پیل سوختی غشای تبادل پروتون دارای پیچیدگی­های ویژه­ای می­باشد و تعیین عملکرد آن بر حسب ویژگی­های ساختاری آن یکی از پارامترهای مورد نیاز برای شناخت بیشتر رفتار پیل­های سوختی غشای تبادل پروتون می­باشد. در این مطالعه، یک نوع پیل سوختی غشا پلیمری برای کاربرد در خودرو تحلیل گردید. در این مدل­سازی، انواع حرارت­های تولیدی-مصرفی در سمت­ های آند و کاتد (از قبیل: حرارت نیم­واکنش­ها، حرارت اکتیواسیون، حرارت جذب/دفع و ...) لحاظ گردید و تحت این شرایط عملکرد پیل سوختی بررسی شد. ﻧﺘﺎیﺞ ﺣﺎﺻﻞ از ﺷﺒﯿﻪﺳﺎزیﻫﺎ ﻧﺸﺎن داد ﮐﻪ ﻣﻘﺪار ﻫﻤﻪی اﺣﺮارتﻫﺎ در ﻃﻮل ﮐﺎﻧﺎل ﺟﺮیﺎن ﮐﺎﻫﺶ ﭘﯿﺪا ﻣﯽﮐﻨﺪ (با متوسط عدد رینولدز 612). ﺑﺮرﺳﯽ ﺗﺎﺛﯿﺮ رﻃﻮﺑﺖ ﻧﺴﺒﯽ ﻧﺸﺎن داد ﮐﻪ رﻃﻮﺑﺖ ﻧﺴﺒﯽ آﻧﺪ در طول کانال جریان کاهش می­باید .سرعت در لایه غشا به دلیل کوچک­تر بودن ضریب نفوذپذیری این لایه نسبت به لایه های پخش گاز و واکنشگرها  (کاتد) بسیار کمتر می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling and simulation of PEM Used for Automotive Applications

نویسندگان [English]

  • Yousef Darvishi 1
  • Reza Hassan-Beygi 2
  • Payam Zarafshan 2
  • Khadijeh Hooshyari 3
1 Department of Biosystems Engineering, University of Tehran, Tehran, Iran
2 Department of Agrotechnology, College of Abouraihan, University of Tehran, Tehran, Iran
3 Department of Applied Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
چکیده [English]

Not only are Fuel cell vehicles one of the significant options to replace gasoline engines, but they also come with a multitude number of benefits; For instance, fuel cell efficiency is more than about three times the efficiency of engines with internal combustion. According to the specific complexities of modeling the behavior of PEMFC, determining the performance of this system in case of its structural characteristics is considered as one of the parameters needed to better know of behavior the PEMFC. The present study attempts to find and examine a polymer membrane fuel cell for utilizing in a vehicle. To examine the performance of fuel cells, the modeling process was done by addressing diverse production-consumption heat in the anode and cathode positions and waterflood conditions. Using quadratic method, the flow channels were meshed and based on the finite difference method the mathematical equations were numerically discretized in the steady-state. Based on the simulation results, all heat values decrease over the channel of flow. By evaluating the relative humidity effect, it was obvious that the cathode relative humidity didn’t change considerably along the channel of flow and at the same time, the relative humidity of the anode decreased along the channel of flow. There was a significantly low membrane layer velocity given the fact that this layer had a lower permeability coefficient in comparison with reactant layers and gas diffusion (Average Reynolds number: 612).
 

کلیدواژه‌ها [English]

  • Fuel cell system
  • Numerical Modeling
  • Automotive
  • FCV
[1] H. Meng, C.Y Wan, Large-scale simulation of polymer electrolyte fuel cells by parallel computing, Chem. Eng. Sci, Vol. 59, pp. 3331–3343, 2004.
[2] Y. Darvishi, S.R. Hassan-Beygi, P. Zarafshan, K. Hooshyari, U. Malaga-Toboła, M. Gancarz, Numerical Modeling and Evaluation of PEM Used for Fuel Cell Vehicles, Materials, Vol. 14, pp. 7907, 2021.
[3] H. Karami, M. Rasekh, Y. Darvishi, Rozhin Khaledi, Effect of Drying Temperature and Air Velocity on the Essential Oil Content of Mentha aquatica L, Journal of Essential Oil Bearing Plants, Vol. 20, No. 4, pp. 1131-1136, 2017. 
[4] S. Darvishi S.R, Hasanbeygi, B. Ghobadian, J. Massah, Magnetizing the Perkins A63544 Engine Fuel and Its Vibratory Assessment, JER, Vol. 38 (38),pp. 17-26, 2015.
[6] C. Y. Wang, Fundamental models for fuel cell engineering, J. Chem. Rev, Vol. 104, pp. 4727-4766, 2004.
[7] S. Eaves, J. Eaves, A cost comparison of fuel-cell and battery electric vehicles, J. Power Sources, Vol. 130, pp. 208–212, 2004.
[8] D. B. Boettner, G. Paganelli, Y. G. Guezennec, G. Rizzoni, M. J. Moran, Proton exchange membrane fuel cell system model for automotive vehicle simulation and control, J. Energy Resources Technology, Vol. 124, pp. 20-27, 2002.
[9] T. Berning, N. Djilali, Three-dimensional computational analysis of transport phenomena in a PEM fuel cell-a parametric study, J. Power Sources, Vol. 124, pp. 440- 452, 2003.
[10] S. Um, C.Y. Wang, Three-dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cells, J. Power Sources, Vol. 125, pp. 40–51, 2004.
[11] S. Mazumder, J.V. Cole, Rigorous 3-D mathematical modeling of PEM fuel cells I. Model predictions without liquid water transport, J. Electrochem Soc, Vol. 150, pp. 1503-1509, 2003.
[12] D. Boettner, G. Paganelli, Y. Guezennec, G. Rizzoni, M. Moran, Component power sizing and limits of operation for proton exchange membrane fuel cell/battery hybrid automotive applications,
ASME International Mechanical Engineering Congress and Exposition, Session: Advanced Automotive Technologies-II, Session No. DSC-8, November 11–16, 2001.
[13] H. Karami, M. Rasekh, Y. Darvishi, Effect of temperature and air velocity on drying kinetics and organo essential oil extraction efficiency in a hybrid dryer, Innovative Food Technologies, Vol. 5, No. 1, pp. 65-75, 2017.
[14] A.Z. Weber, J. Newman, Transport in polymer electrolyte membranes I. Physical model, J. Electrochem. Soc, Vol. 150, pp. 1008-1015, 2003.
[15] S. Um, C.V. Wang, Three-dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cells, J. Power Sources, Vol. 125, pp. 40–51, 2004.
[16] J. M. Ogden, M. M. Steinbugler, T. G. Kreutz, A comparison of hydrogen, methanol, and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development, J. Power Sources, Vol. 79, pp. 143–168, 1999.
[17] D.R, Morris, X. Sun, Water sorption and transport properties of Nafion 117, J. Applied Polymer Science, Vol. 50, pp. 1445-1452, 1993.
[18] K. Okamoto, Sorption and diffusion of water vapor in polyimide film. In: M.K. Ghosh, K.L. Mittal (Eds.), Polyimides Fundamentals and Applications, Marcel Dekker, New York, U.S.A, pp. 265-278, 1996.
[19] D.J. Burnett, A.R. Garcia, F. Thielmann, measuring moisture sorption and diffusion kinetics on proton exchange membranes using a gravimetric vapor sorption apparatus, J. of Power Sources, Vol. 160, pp. 426-430, 2006.
[20] J. Ramousse, O. Lottin, S. Didierjean, D. Maillet, Heat sources in proton exchange membrane (PEM) fuel cells, J. of Power Sources, Vol. 192, pp. 435-441, 2009.
[21] K. Shekhar, an investigation into the minimum dimensionality required for accurate simulation of proton exchange membrane fuel cells by the comparison between 1-and 3-dimension models. University of Cape Town; 2013.
[22] A. Damjanovic, V. Brusic, Electrode kinetics of oxygen reduction on oxide-free platinum electrodes. Electrochim Acta, Vol. 12, No. 6, pp. 615-28, 1967.
[23] J. Park, L. Xiang, Effect of flow and temperature distribution on the performance of a PEM fuel cell stack, Journal of Power Sources, Vol. 162, No. 1, pp. 444-459, 2006.
[24] L. Xiang, Principles of fuel cells, Taylor and Francis, New York, pp. 572, 2006.
[25] M.M. Mench M, Fuel cell engines, John Wiley & Sons Inc, New York, pp. 528, 2008.