تاثیر افزودن هیدروژن بر عملکرد موتور RCCI با سوخت گاز طبیعی و گازوئیل در محدوده بار پائین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشگاه آزاد اسلامی واحد نور، نور، ایران

2 دانشیار، دانشگاه خواجه نصیر طوسی، تهران، ایران

3 دانشیار، دانشگاه آزاد اسلامی واحد نور، نور، ایران

4 استادیار، دانشگاه آزاد اسلامی واحد آیت الله آملی، آمل، ایران

5 استادیار، دانشگاه آزاد اسلامی واحد نور، نور، ایران

چکیده

هدف از این مطالعه بررسی اثر افزودن هیدروژن بر عملکرد و انتشار آلاینده یک موتور دیزل سنگین تحت احتراق RCCI با سوخت گاز طبیعی و گازوئیل است. بر این اساس، یک موتور دیزل تک سیلندر دیزل سنگین برای کار در محدوده بار پائین از فشار موثر متوسط اندیکاتوری ناخالص از 5.6 تا 7.7 بار، دور ثابت موتور، و مقدار ثابت گازوئیل مورد استفاده قرار می گیرد. علاوه بر این، برای کاهش مصرف سوختهای هیدروکربنی، به تدریج هیدروژن به گاز طبیعی اضافه می شود در حالیکه محتوای کل انرژی سوخت ثابت نگهداشته می شود. نتایج نشان می دهد که با افزودن هیدروژن به گاز طبیعی در موتور RCCI در فشار موثر متوسط اندیکاتوری ناخالص 5.6، 6.3 و 7.7 بار، سهم انرژی هیدروژن به ترتیب تا 35.7٪، 23.70٪ و 9.93٪ ارتقا می یابد. همچنین، مصرف کلی سوخت هیدروکربنی در هر چرخه را می توان به ترتیب تا 45/23 درصد، 29/26 درصد و 12/07 درصد کاهش داد. اگرچه انتشار آلاینده های CO و UHC به شدت کاهش می یابد اما آلاینده NOx به طور قابل توجهی با افزودن هیدروژن در مقایسه با احتراق RCCI با سوختهای گاز طبیعی و گازوئیل افزایش می یابد.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Hydrogen Addition on a RCCI Engine Performance Fueled with Natural GasDiesel Fuel at Low Load Range

نویسندگان [English]

  • Jafar Bazrafshan 1
  • Seyed Ali Jazayeri 2
  • Hesamoddin Salarian 3
  • Mojtaba Ebrahimi 4
  • Jahanfar Khaleghinia 5
1 Islamic Azad University, Nour Branch, Nour, Iran
2 K. N. Toosi University of Technology, Tehran, Iran
3 Islamic Azad University, Nour Branch, Nour, Iran
4 Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran
5 Islamic Azad University, Nour Branch, Nour, Iran
چکیده [English]

The aim of this study is to evaluate the effect of hydrogen addition on a heavy-duty diesel engine performance and emission under RCCI combustion fueled with natural gas and diesel fuel. For this purpose, a single-cylinder heavy-duty diesel engine is used to operate at a low-load range from 5.6 to 7.7 bar gross IMEP, constant engine speed, and a fixed amount of diesel fuel. Furthermore, in order to reduce hydrocarbon fuels consumption, hydrogen is gradually added to natural gas while the total fuel energy content is kept to be constant. The results show that by adding hydrogen to natural gas in the RCCI engine at 5.6, 6.3, and 7.7 bar gross IMEP, the hydrogen energy share would be enhanced up to 35.7%, 23.70%, and 9.93%, respectively. And also, the overall hydrocarbon fuels consumption per cycle can be reduced up to 45.23%, 29.26%, and 12.07%, respectively. Although CO and UHC emissions decrease drastically, NOx increases significantly with the addition of hydrogen compared to RCCI combustion fueled with natural gas and diesel fuel.
 

کلیدواژه‌ها [English]

  • RCCI combustion
  • Natural gas
  • Hydrogen
  • Emission
  • Low load
[1] M. W, Exhaust Gas Emission Control Today and Tomorrow, Application on MAN B&W Two-stroke Marine Diesel Engines, MAN Diesel, Copenhagen, Denmark, 2010
[2] W.L. Hardy and R.D. Reitz, A study of the effects of high EGR, high equivalence ratio, and mixing time on emissions levels in a heavy-duty diesel engine for PCCI combustion, SAE Technical Paper, 2006
[3] M. Fathi, O. Jahanian and M. Shahbakhti, Modeling and controller design architecture for cycle-by-cycle combustion control of homogeneous charge compression ignition (HCCI) engines–a comprehensive review, Energy Conversion and Management, Vol. 139, pp. 1-19, 2017
[4] S Kokjohn, R Hanson, D Splitter, J Kaddatz and R.D. Reitz, Fuel reactivity controlled compression ignition (RCCI) combustion in light-and heavy-duty engines, SAE International Journal of Engines, Vol. 4, No. 1, pp. 360-374, 2011
[5] N.R. Walker, M.L. Wissink, D.A. DelVescovo and R.D. Reitz, Natural gas for high load dual-fuel reactivity controlled compression ignition in heavy-duty engines, Journal of Energy Resources Technology, Vol. 137, No. 4, pp. 042202, 2015
[6] M. Ebrahimi, M Najafi, S.A. Jazayeri and A.R. mohammadzadeh, A detail simulation of reactivity controlled compression ignition combustion strategy in a heavy-duty diesel engine run on natural gas/diesel fuel, International Journal of Engine Research, Vol. 19, No. 7, pp.  1-16, 2017
[7] A. Gharehghani, R. Hosseini, M. Mirsalim, S.A. Jazayeri and T. Yusaf, An experimental study on reactivity controlled compression ignition engine fueled with biodiesel/natural gas, Energy, Vol. 89, pp. 558-567, 2015
[8] A. Paykani, A.H. Kakaee, P. Rahnama and R.D. Reitz, Effects of diesel injection strategy on natural gas/diesel reactivity controlled compression ignition combustion, Energy, Vol. 90, No.1, pp. 814-826, 2015
[9] R.D. Reitz and G. Duraisamy, Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines, Progress in Energy and Combustion Science, Vol. 46, pp. 12-71, 2015
[10] H. Kokabi, M. Najafi, S.A. Jazayeri and O. Jahanian, Hydrogen and propane implications for reactivity controlled compression ignition combustion engine running on landfill gas and diesel fuel, International journal of hydrogen energy, Vol. 46, No. 62, pp.  31903-31915, 2021
[11] A.H. Kakaee, A. Nasiri-Toosi, B. Partovi and A. Paykani, Effects of piston bowl geometry on combustion and emissions characteristics of a natural gas/diesel RCCI engine, The Journal of Engine Research, Vol. 11, No. 40, pp. 59-70, 2015
[12] V. Kumar, D. Gupta and N. Kumar, Hydrogen use in internal combustion engine: a review, International Journal of Advanced Culture Technology (IJACT), Vol. 3, No. 2, pp. 87-99, 2015
[13] R. Ahmadi and S.M. Hosseini, Numerical investigation on adding/substituting hydrogen in the CDC and RCCI combustion in a heavy duty engine, Applied Energy, Vol. 213, pp. 450-468, 2018
[14] A. Kakoee, Y. Bakhshan, S. Motadayen Aval and A. Gharehghani, An improvement of a lean burning condition of natural gas/diesel RCCI engine with a pre-chamber by using hydrogen, Energy Conversion and Management, Vol. 166, pp. 489-499, 2018
[15] M. Sattarzadeh, M. Ebrahimi and S.A. Jazayeri, A detail study of a RCCI engine performance fueled with diesel fuel and natural gas blended with syngas with different compositions, International Journal of Hydrogen Energy, Vol. 47, No. 36, pp. 16283-16296, 2022
[16] H. Mabadi Rahimi, S.A. Jazayeri and M. Ebrahimi, Hydrogen Energy Share Enhancement in a Heavy Duty Diesel Engine under RCCI Combustion Fueled with Natural Gas and Diesel Oil, International Journal of Hydrogen Energy, Vol. 45, No. 35, pp. 17975-17991, 2020
[17] H. Mabadi Rahimi, S.A. Jazayeri and M. Ebrahimi, Multi-Objective Optimization of a RCCI Engine Fueled with Diesel Fuel and Natural Gas Enriched with Hydrogen, Gas processing Journal, Vol. 9, NO. 2, pp. 33-42, 2021
[18] D. Splitter, M. Wissink, S. Kokjohn and R.D. Reitz, Effect of compression ratio and piston geometry on RCCI load limits and efficiency, SAE Technical Paper, 2012
[19] A. Rahimi, E. Fatehifar and R.K. Saray, Development of an optimized chemical kinetic mechanism for homogeneous charge compression ignition combustion of a fuel blend of n-heptane and natural gas using a genetic algorithm, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 224, No.9, pp. 1141-1159, 2010
[20] A. Gosman and E. Loannides, Aspects of computer simulation of liquid-fueled combustors, Journal of energy, Vol. 7, No. 6, pp. 482-490, 1983
[21] J. Naber and R.D. Reitz, Modeling engine spray/wall impingement, SAE transactions, Vol. 97, No. 6, pp. 118-140, 1988.
[22] J.K. Dukowicz, Quasi-steady droplet phase change in the presence of convection, Los Alamos Scientific Lab, 1979
[23] A.B. Liu, D. Mather and R.D. Reitz, Modeling the effects of drop drag and breakup on fuel sprays, SAE Transactions, Vol. 32, No.3, pp. 83-95, 1993
[24] C. von KuensbergSarre, S.C. Kong and R.D. Reitz, Modeling the effects of injector nozzle geometry on diesel sprays, SAE Technical Paper, Vol. 108, No. 3, pp.1375-1388, 1999
[25] C. Pichler and Nilsson EJK, Analysis of Important Chemical Pathways of N‑Heptane Combustion in Small Skeletal Mechanisms, Energy & Fuels, Vol. 34, No. 1, pp. 758−768, 2020
[26] H. Ando and S. Yasuyuki, Universal Rule of Hydrocarbon Oxidation, SAE Technical Papers, 01-0948, 2009
[27] Y. Li, M. Jia, Y. Chang, W. Fan, M. Xie and T. Wang, Evaluation of the necessity of exhaust gas recirculation employment for a methanol/diesel reactivity controlled compression ignition engine operated at medium loads, Energy Conversion and Management, Vol. 101, pp. 40-51, 2015
[28] M. Ebrahimi and S.A. Jazayeri, Effect of hydrogen addition on RCCI combustion of a heavy duty diesel engine fueled with landfill gas and diesel oil, International Journal of Hydrogen Energy, Vol. 44, No. 14, 2019
[29] A. Kakoee, Y. Bakhshan, S.M. Aval and A. Gharehghani, An improvement of a lean burning condition of natural gas/diesel RCCI engine with a pre-chamber by using hydrogen, Energy conversion and management, Vol. 166, pp. 489-499, 2018
[30] F.D.F. Chuahy and S.L. Kokjohn, Effects of reformed fuel composition in “single” fuel reactivity controlled compression ignition combustion, applied energy, Vol. 208, pp. 1-11, 2017
[31] J.A. Eng, Characterization of pressure waves in HCCI combustion, SAE Technical Paper, 2002
[32] N.R. Walker, A.B. Dempsey, M.J. Andrie and R.D. Reitz, Use of low-pressure direct-injection for reactivity controlled compression ignition (RCCI) light-duty engine operation, SAE International Journal of Engines, Vol. 6, No. 2, pp. 1222-1237, 2013
[33] B.B. Sahoo, N. Sahoo and U.K. Saha, Effect of H2: CO ratio in syngas on the performance of a dual fuel diesel engine operation, Applied Thermal Engineering, Vol. 49, pp. 139-146, 2012
[34] D.E. Nieman, A.B. Dempsey and R.D. Reitz, Heavy-duty RCCI operation using natural gas and diesel, SAE International Journal of Engines, Vol. 5, No. 2, pp. 270-285, 2012
[35] S.S. Kalsi and K. Subramanian, Experimental investigations of effects of hydrogen blended CNG on performance, combustion and emissions characteristics of a biodiesel fueled reactivity controlled compression ignition engine (RCCI), International Journal of Hydrogen Energy, Vol. 42, No. 7, pp. 4548-4560, 2017
[36] H. Zhao, Advanced Direct Injection Combustion Engine Thechnologies and Development (Diesel Engine), Navistar Inc., USA, 2010
[37] CIMAC, Methane and Formaldehyde Emission of Gas Engine, Frankfurt, CIMAC, 2014