طراحی کنترل کننده غیرخطی دیجیتال برای فرایند گرم شدن واکنشگر شیمیایی یک موتور اشتعال جرقه ای

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک دانشگاه صنعتی خواجه نصیرالدین طوسی، ایران

چکیده

این مقاله، روش جدیدی را برای کنترل مد لغزشی گسسته، مبتنی بر مدل، برای استارت سرد یک موتور اشتعال جرقه‌ای با در نظر گرفتن اثرات دینامیک غیرخطی، عدم قطعیت مدل‌سازی و پیکربندی‌های سوئیچ چندگانه دینامیک را ارایه می‌دهد. الگوریتم کنترل با مساله تثبیت و ردیابی سرعت میل لنگ، نسبت هوا به سوخت و دمای کاتالیزور در حالت استارت سرد سروکار دارد. برای این منظور، یک تابع لغزش منحصر به فرد به هر مساله ردیابی اختصاص داده شده که متعاقباً در ساخت تابع لیاپانوف مرتبط استفاده می شود. سرعت میل لنگ با استفاده از نرخ جریان جرم هوا در راهگاه ورودی با در نظر گرفتن معادلات دینامیکی مرتبط که جریان جرم هوا را توصیف می‌کنند، تنظیم می‌شود. برای اطمینان از کنترل دقیق نسبت هوا به سوخت، مدل کنترل لغزشی با در نظر گرفتن نرخ جریان جرم هوا محاسبه است که منجر به عبارات غیر خطی می شود که متعاقباً در محاسبه نرخ جریان جرم سوخت مناسب به کار می روند. تثبیت دمای کاتالیزور از طریق تعریف ورودی کنترلی مجازی مربوط به زاویه جرقه انجام می شود. از آنجایی که دمای کاتالیزور با استفاده از عبارات ریاضی لگاریتمی توصیف می‌شود، مراحل اضافی باید برای اطمینان از امکان‌سنجی الگوریتم کنترل در شرایط عملیاتی مختلف در نظر گرفته شود. کنترل طراحی شده به صورت عددی در مدل ریاضی معتبر موتور تویوتا 2AZ-FE اعمال شد تا کارایی و دقت عملکرد بازخورد را ارائه دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Designing Nonlinear Digital Controller for Switching Non Affine Process of Spark Ignition Engine Catalyst Warm-Up

نویسندگان [English]

  • Mohammad Reza Homaeinezhad
  • Sadegh Yaqubi
  • Vahid Khorrami Rad
Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Iran
چکیده [English]

This paper details a new method for model-based discrete sliding mode control of a spark ignition (S.I.) engine cold start considering nonlinear dynamic effects, modeling uncertainty and multiple switched dynamic configurations. Control algorithm deals with stabilization and tracking problems that correspond to crank-shaft velocity, air-to-fuel ratio (AFR) and catalyst temperature in cold start operating mode. To this end, an individual sliding function is assigned to each tracking problem which is subsequently used in construction of associated Lyapunov function. Crank-shaft velocity is regulated using air mass flow rate into intake manifold considering associated dynamic equations describing air mass flow. To ensure precise AFR control, the sliding control model is constructed considering the previously calculated air mass flow rate which leads to nonlinear expressions that are subsequently employed in calculation of appropriate fuel mass flow rate. Stabilization of catalyst temperature is conducted through definition of a virtual control input corresponding to spark angle. As catalyst temperature is described using logarithmic mathematical expressions, additional steps have to be considered to ensure feasibility of control algorithm in various operating conditions. The designed control was numerically applied to validated mathematical model of Toyota 2AZ-FE engine so as to render efficiency and precision of feedback performance.
 

کلیدواژه‌ها [English]

  • Digital Engine Control
  • Switching Process
  • Spark Ignition (S.I.) Engine
  • sliding mode control
  • Robust control
[1] C. Khajorntraidet, K. Ito, Simple adaptive air-fuel ratio control of a port injection SI engine with a cylinder pressure sensor, Control Theory and Technology, Vol. 13, No. 2, pp.  141–150, 2015
[2] C. Zhang, Y. Zhang, C. Chai, M. Zhou, Terminal sliding mode control of rail pressure for gasoline direct injection engines, Control Theory and Technology, Vol. 17, No. 2, pp. 183–189, 2019
[3] M. Hirata, S. Ishizuki, M. Suzuki, Two-degree-of-freedom H-infinity control of combustion in diesel engine using a discrete dynamics model, Control Theory and Technology, Vol. 15, No. 2, pp. 109–116, 2017
[4] W. Jiang, T. Shen, Nonlinear observer-based control design and experimental validation for gasoline engines with EGR, Control Theory and Technology, Vol. 17, No. 3, pp. 216–227, 2019
[5] Tabatabaei Oreh, S.H. Hamed, R. Kazemi, S. Azadi, A sliding-mode controller for directional control of articulated heavy vehicles, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 228, No. 3, pp. 245–262, 2014.
[6] A. Abu Alqumsan, S. Khoo, M. Norton, Multi-surface sliding mode control of continuum robots with mismatched uncertainties, Meccanica, Vol. 54, No. 14, pp. 2307–2316, 2019
[7] H. Khajehsaeid, B. Esmaeili, R. Soleymani, A. Delkhosh. Adaptive back stepping fast terminal sliding mode control of robot manipulators actuated by pneumatic artificial muscles: continuum modelling, dynamic formulation and controller design. Meccanica, Vol. 54, No. 8, pp. 1203–1217, 2019
[8] S. Nüesch, P. Gorzelic, L. Jiang, J. Sterniak, A.G. Stefanopoulou, Accounting for combustion mode switch dynamics and fuel penalties in drive cycle fuel economy, International Journal of Engine Research, Vol. 17, No. 4, pp. 436–450, 2016
[9] M.R. Homaeinezhad, S. Yaqubi, F. Fotoohinia, FEA based discrete-time sliding mode control of uncertain continuum mechanics MIMO vibrational systems, Journal of Sound and Vibration, Vol. 460, pp. 114902, 2019
[10] M.R. Homaeinezhad, S. Yaqubi, Discrete-time sliding-surface based control of parametrically uncertain nonlinear systems with unknown time-delay and inaccessible switching mode detection, International Journal of Control, Vol. 94, No. 3, pp. 623-642, 2019
[11] M.R. Homaeinezhad, S. Yaqubi, H.M.  Gholyan, Control of MIMO mechanical systems interacting with actuators through viscoelastic linkages. Mechanism and Machine Theory, Vol. 147, pp. 103763, 2020
[12] J. Zhang, L. Liu, X. Li, W.  Li, Chattering-Free Sliding Mode Control for Diesel Engine Air Path System with Actuator Faults, IFAC-PapersOnLine, Vol. 51, No. 31, pp. 429–434, 2018
[13] Y. Q. Zhang, Y. S. Zhao, J. Yang, L. P. Chen. A dynamic sliding-mode controller with fuzzy adaptive tuning for an active suspension system. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 221, No. 4, pp. 417–428, 2007
[14] Y. Yamasaki, R. Ikemura, M.Takahashi, S. Kaneko, A. Uemichi, Multiple-input multiple-output control of diesel combustion using a control-oriented model, International Journal of Engine Research, Vol. 20, No. 10, pp. 1005–1016, 2019
[15] S. Pan, J.K. Hedrick, Tracking Controller Design for MIMO Nonlinear Systems with Application to Automotive Cold Start Emission Reduction, Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, Vol. 137, No.10, pp. 1–12, 2015
[16] M.R. Homaeinezhad, A. Shahhosseini, High-performance modeling and discrete-time sliding mode control of uncertain non-commensurate linear time invariant MIMO fractional order dynamic systems, Communications in Nonlinear Science and Numerical Simulation, Vol. 84, pp. 105200, 2020
[17] X. Su, X. Liu, P. Shi, R. Yang, Sliding Mode Control of Discrete-Time Switched Systems with Repeated Scalar Nonlinearities, IEEE Transactions on Automatic Control, Vol. 62, No. 9, pp. 6406-6410, 2016
[18] B. Bandyopadhyay, V.K. Thakar, Discrete time output feedback sliding mode control for nonlinear MIMO system: a stepper motor case, International Journal of Systems Science, Vol. 39, No. 1, pp. 89–104, 2008
[19] M.R. Amini, M. Shahbakhti, S. Pan, Adaptive discrete second-order sliding mode control with application to nonlinear automotive systems. Journal of Dynamic Systems, Measurement, and Control, Vol. 140, No. 12, 2018
[20] M.R. Amini, M. Shahbakhti, S. Pan, J.K. Hedrick, Bridging the gap between designed and implemented controllers via adaptive robust discrete sliding mode control, Control Engineering Practice, Vol. 59, pp. 1-15, 2017
[21] K. Edelberg, S. Pan, J.K. Hedrick, Design of automotive control systems robust to hardware imprecision, In Dynamic Systems and Control Conference, American Society of Mechanical Engineers, Vol. 56123, p. V001T12A002, 2013
[22] M. Amini, M. Shahbakhti, J.K. Hedrick. Discrete sliding controller design with robustness to implementation imprecisions via online uncertainty prediction, In 2016 American Control Conference (ACC), IEEE, pp. 6537-6542, 2016
[23] M.R. Amini, M. Shahbakhti, S. Pan, J.K. Hedrick, Handling model and implementation uncertainties via an adaptive discrete sliding mode controller design, In Dynamic Systems and Control Conference, American Society of Mechanical Engineers, Vol. 50701, pp. V002T28A001, 2016
[24] P.R. Sanketi, J.C. Zavala, J.K. Hedrick, M. Wilcutts and T. Kaga, A Simplified Catalytic Converter Model for Automotive Coldstart Applications with Adaptive Parameter Fitting, Int. Symp, on Advanced Vehicle Control, Vol. 8, pp, 62-65, 2006.
[25] P.R. Sanketi, Coldstart Modeling and Optimal Control Design for Automotive SI Engines, Ph.D. Dissertation, UC Berkeley, 2009.