شبیه سازی جریان چندفازی انژکتور موتور و کمیت اندیکاتوری برای هندسه های مختلف نازل و حرکت سوزن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد تبدیل انرژی، دانشگاه بین المللی امام خمینی، ایران

2 دکترا دانشگاه امام علی (ع)، تهران، ایران

3 استادیار دانشگاه امام علی (ع)، تهران، ایران

چکیده

در مقاله حاضر، تأثیر استفاده از هندسه‌های مختلف دهانه و بالابرهای سوزنی بر انتقال گذرا جرم گرما و مقادیر نشان‌دهنده احتراق و گونه‌های آلاینده هوا در انژکتورهای سوخت سیستم محرکه دریایی با استفاده از کد AVL-Fire CFD مورد بررسی قرار گرفته است. تأثیر هر یک از پروفیل‌های هندسی پیشنهادی و حرکت سوزن (مثلثی، ذوزنقه‌ای و چکمه‌ای) با کمک یک مش متحرک سه‌بعدی به‌وسیله مدل عددی در نرم‌افزار AVL Fire که با داده‌های آزمایشی در هر قسمت تأیید شده است، بر روی عملکرد و گونه های آلاینده هوا سیستم پیشران دریایی توسط ماژول ANALYZER بررسی شده است. نتایج عددی نشان می دهد که مخروطی همگرا با پروفیل بالابر سوزنی ذوزنقه ای عملکرد موتور، راندمان و آلودگی کمتر NO را دارد. اگرچه، مخروطی واگرا با پروفیل بالابر سوزنی ذوزنقه دارای آلودگی CO کمتری است. مصرف سوخت 18.5 درصد کاهش می یابد و قدرت و گشتاور آن 64 درصد افزایش می یابد. همچنین در این حالت آلاینده‌های مونوکسید کربن 14 درصد و آلاینده‌های اکسید نیتروژن 10 درصد کاهش می‌یابند تا وضعیت بهینه به دست آید. در این حالت راندمان نشان داده شده و بازده مکانیکی به ترتیب 22% و 41.5% افزایش می‌یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Engine Injector Multiphase Flow with Indicated Quantities Simulation for Different Orifice Geometries and Needle Movements

نویسندگان [English]

  • Reza Firuzi 1
  • Farid Bagherpoor 2
  • Amirhamzeh Farajollahi 3
1 Faculty of Mechanical Engineering, Imam Khomeini International University, Iran
2 Faculty of Mechanical Engineering, Imam Ali University, Iran
3 Faculty of Aerospace Engineering, Imam Ali University, Iran
چکیده [English]

In the present paper, the effect of using Different Orifice Geometries & Needle Lifts on transient heat-mass transfer and Combustion Indicated Quantities & Air Pollutant Species has been investigated in Marine Propulsion System Fuel Injectors using AVL-Fire CFD code. The effect of each of the proposed geometry and needle movement profiles (triangular, trapezius & boot) with the help of a three-dimensional moving mesh by numerical model in AVL Fire software, which has been validated with experimental data in each part, on the performance & Air Pollutant Species of the Marine Propulsion System has been investigated by ANALYSER module. Numerical results show that converged conical with trapezius needle lift profile has better engine performance, efficiencies and lower NO pollution. Although, diverged conical with trapezius needle lift profile has lower CO pollution. Fuel consumption decreases by 18.5% and its power and torque increase 64%. Also in this case, carbon monoxide pollutants decrease by 14% and nitrogen oxide pollutants decreasing by 10% for optimum status. In these case, indicated and mechanical efficiencies are increasing 22% and 41.5%, respectively.

کلیدواژه‌ها [English]

  • Marine Propulsion System
  • Heat and mass transfer
  • Air Pollutant Species
  • trapezius profile
  • Needle Lifts
[1] J.B. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill, Inc., New York, 1998.
[2] F.J. Salvador, J. Martínez-López, M. Caballer and C. De Alfonso, Study of the Influence of the Needle Lift on the Internal Flow and Cavitation Phenomenon in Diesel Injector Nozzles by CFD Using RANS Methods, Energ. Conversion. Manage, Vol. 66, No. 2, pp. 246-256, 2013.        
[3] C. Yao, C. Cheung, C. Cheng and Y. Wang, Reduction of Smoke and Nox from Diesel Engines Using A Diesel/Methanol Compound Combustion System, Energ . Fuels, Vol. 21, No. 2, pp. 686-691, 2007.        
[4] C. Yao, P. Geng, Z. Yin, J. Hu, D. Chen and Y. Ju, Impacts of Nozzle Geometry on Spray Combustion of High Pressure Common Rail Injectors in A Constant Volume Combustion Chamber, Fuel, Vol. 179, No. 1, pp. 235-245, 2016.
[5] S. Som, S.K. Aggarwal, E.M. El-Hannouny and D.E. Longman, Investigation of Nozzle  Flow and Cavitation Characteristics in A Diesel Injector, J.  Eng.  Gas. Turb.  Power, Vol. 132, pp. 1–12, 2010.
[6] S. Som, D.E. Longman, A.I. Ramirez and  S.K. Aggarwal, Influence of Nozzle Orifice Geometry and Fuel Properties on Flow and Cavitation  Characteristics of A Diesel Injector, In: Lejda Kazimierz, editor, Fuel injection in automotive engineering, InTech, ISBN: 978-953-51-0528-2, 2012.
[7] C. Soteriou, R. Andrews and M. Smith, Direct Injection Diesel Sprays and the Effect of Cavitation and Hydraulic Flip on Atomization, SAE Technical Paper 950080, 1995.  
[8] H.K. Suh and C.S. Lee, Effect of Cavitation in Nozzle Orifice on the Diesel Fuel Atomization Characteristics, Int. J. Heat. Fluid. FL, Vol. 29, pp.1001–1009, 2008.           
[9] F. Payri, V. Bermúdez, R. Payri and F.J. Salvador, The Influence of Cavitation on the Internal Flow and the Spray Characteristics in Diesel Injection Nozzles, Fuel, Vol. 83, pp. 419–431, 2004.
[10] R. Payri, F.J. Salvador, J. Gimeno and J. dela Morena, Study of Cavitation Phenomena Based on A Technique for Visualizing Bubbles in A Liquid Pressurized Chamber, Int. J. Heat.  Fluid. FL, Vol. 30, pp. 768–777, 2009.
[11] S. George, K. Phoevos, T. Andreas, G. Manolis and B. George, Transient Heating Effects in High Pressure Diesel Injector Nozzles, International Journal of Heat and Fluid Flow, 2014.
[12] A.H. Farajollahi, R. Firuzi, M. Rostami and A. Mardani, Numerical Study on the Effects of Creating Rotationary Flow Inside the Injector Nozzle and Changing Fuel Injection Angle on the Performance and Emission of Caterpillar Diesel Engine, Journal of the Brazilian Society of Mechanical Science and Engineering, Vol. 44, No. 3, pp. 1-17, 2022.           
[13] K. Konstantinos, K. Phoevos, M. Robert and G. Manolis, Transient Cavitation and Friction-Induced Heating Effects of Diesel Fuel during the Needle Valve Early Opening Stages for Discharge Pressures up to 450 MPa, Energies, 2021.
[14] K. Phoevos, G. Manolis, L. Jason and W. Lifeng, Large Eddy Simulation of Diesel injector including cavitation effects and correlation to erosion damage, Fuel, Vol. 175, pp. 26–39, 2016.
[15] A.H. Farajollahi, R. Firuzi, M. Rostami and F. Bagherpoor, Consideration of the Effects of Increasing Spray Cone Angle and Turbulence Intensity on Heavy-Duty Diesel Engine Pollution and Specific Outputs Using CFD, International Journal of Engine Research, Article in Press, 2022.
[16] P.G. Aleiferis and N. Papadopoulos, Heat and Mass Transfer Effects in the Nozzle of A Fuel Injector from the Start of Needle Lift to After the End of Injection in the Presence of Fuel Dribble and Air Entrainment, International Journal of Heat and Mass Transfer, Vol. 165, pp. 120576, 2021.   
[17] F. Jaliliantabar, B.  Ghobadian and Najafi, G., Optimizing the EGR Rate, Biodiesel Fuel Ratio and Engine Working Mode Using RSM Method, Journal of fuel and combustion, Vol. 10, No.03, pp. 15-31, 2016.     
[18] A.H. Farajollahi, R. Firuzi, M. Pourseifi, A. Mardani and M. Rostami, Numerical Investigation of the Effect of Swirl and Needle Lift Profile Change on the Diesel Fuel Spray Behavior, Journal of Engine Research, Vol. 54, pp. 25-38, 2019.
[19] Avl List GmbH. AVL Fire v. 2013, CFD solver, Eulerian multiphase, 2013.
[20] Avl List GmbH. AVL Fire v. 2013, CFD solver, Spray, 2013.           
[21] N.I. Kolev, Multiphase Flow Dynamics 3: Turbulence, Gas Absorption and Diesel Fuel Properties, Springer, 2007.           
[22] A.H. Farajollahi and R. Firuzi, Numerical Investigation on the Effect of Creating Swirly Flow Inside the Nozzle and Injection Pressure Increase on the Cavitation and Diesel Fuel Spray Characteristics, Mechanical Engineering, Vol. 51, No. 3 , pp. 155-164, 2020.