بررسی گشتاور و توان تولیدی سامانه‌ تولید و انتقال قدرت در خودروهای برقی دورگه‌ با آرایش موازی در حالت های رانندگی

نویسندگان

1 دانشگاه شهید بهشتی-دانشکده مهندسی مکانیک

2 عضو هیات علمی دانشکده مهندسی مکانیک و انرژی دانشگاه شهید بهشتی

چکیده

امروزه یکی از نکات اصلی و مورد توجه خودروسازان مطرح دنیا در مراحل طراحی، ساخت و تولید انبوه محصولات، کاهش و یا مهار آلودگی­‌های ناشی از احتراق در موتورهای احتراق داخلی خودرو است. با توجه به قوانین و استانداردهای وضع شده در کشورهای مختلف و در دهه‏‌های اخیر در خصوص مهار آلودگی‌های زیست­‌محیطی وسایل نقلیه، این نکات بیش از پیش مورد توجه تولیدکنندگان خودرو و قطعات آن است. به همین دلیل تولید خودرو­های برقی و دورگه‏ با طراحی­‌های مختلف به مرور زمان و به آرامی در خطوط تولید خودرو­ها گسترش می‌‏­یابد. یکی از ویژگی­‌هایی که این دسته از خودرو­های دورگه دارند، افزایش توان و گشتاور در سامانه‏ تولید و انتقال قدرت در نوع همراه با آرایش موازی است. پس می‏توان برای این دسته از خودرو­ها، موتور احتراق داخلی با حجم کم­تر درنظر گرفت که در نهایت سبب کاهش آلودگی تولیدی می‏‏شود و در عین حال فعالیت موازی دو موتور احتراق داخلی و برقی باعث ایجاد گشتاور و توان مورد نیاز در حالات مختلف رانندگی می‏‏شود. نوع آرایش قرارگیری موتور احتراق داخلی و برقی در مقاله حاضر از نوع موازی است. در این مقاله موتور احتراق داخلی ملی 7EF را با سازوکار لنگ و لغزنده، شبیه­‌سازی و نتایج توان و گشتاور تولیدی در میل‏‌لنگ این موتور را در نرم­‌افزار متلب رسم و تحلیل خواهیم کرد. موتور برقی BRUSA HSM1 که در این مقاله به عنوان موتور برقی و پایه اصلی سامانه‏ تولید قدرت بررسی می‏‏شود، با استفاده از روش­های تقریبی و محاسبات عددی و همچنین اطلاعات استخراج شده از دفترچه این موتور تحلیل خواهد شد. در نهایت با تحلیل حالات مختلف رانندگی و اعمال ضرایب بازده، گشتاور و توان تولیدی سامانه‏ را در این وضعیت­‌ها بررسی می‏کنیم.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of torque and power output of power generation system in hybrid electric vehicles with parallel arrangement in driving modes

نویسندگان [English]

  • Farhad Haddadi 1
  • Mostafa Taghizadeh 2
1
2
چکیده [English]

Nowadays, one of the main points considered by the world’s leading automakers in the design phase, the manufacturing phase and mass production, is the reduction or control of pollutions and emissions in the internal combustion engines of automobiles. Due to the standards set in different countries and recent decades regarding the control of environmental pollution of vehicles, these points are considered by car manufacturers. Because of that, the production of electric and hybrid cars with different designs is slowly expanding over time in the manufacturing lines of vehicles. One of the features of hybrid electric vehicles is the increase in power and torque in the power production system in the parallel arrangement. Therefore, for this group of cars, a smaller internal combustion engine can be considered, which ultimately reduces the emissions, and at the same time, the parallel activity of the two internal combustion engines and AC motor creates the required torque and power in different driving mode. The formation and arrangement of two power sources in this article will be considered parallel. In this paper, we will simulate the movements of pistons in the EF7 national internal combustion engine with a crank and slider mechanism, and the results related to the power and torque produced in the crankshaft of this engine will be drawn and simulated in MATLAB software. BRUSA HSM1 AC motor, which is considered in this paper as the main power source of power and torque generation system, will be analyzed using numerical calculations, as well as information extracted from the catalog of this motor. Finally, by analyzing different driving modes and applying coefficients and efficiencies, torque and power output in these situations are examined.

کلیدواژه‌ها [English]

  • Internal combustion engine
  • Electric motor
  • Hybrid Electric Vehicles
  • Power Generation
  • EF7 national engine
[1]  Ehsani, Mehrdad, Yimin Gao, Stefano Longo, and Kambiz M. Ebrahimi. Modern electric, hybrid electric, and fuel cell vehicles. CRC press, 2018.
[2]  Norton,  Robert  L.  Design  of  machinery:  an introduction  to  the  synthesis  and  analysis  of mechanisms  and  machines.  McGraw-Hill/Higher Education, 2008.
[3]  Heywood,  John  B.  "Combustion  engine fundamentals." 1ª Edição. Estados Unidos, Vol.  25, pp. 1117-1128, 1988
[4]  Fischer,  Robert,  Ferit  Küçükay,  Gunter  Jürgens, Rolf  Najork,  and  Burkhard  Pollak.  The  automotive transmission book. Springer, 2015.
[5]  Chan,  C.  C.,  K.  T.  Chau,  and  K.  T.  Chau.  Modern electric vehicle technology. Vol. 47. Oxford University Press on Demand, 2001.
[6]  Sen,  Paresh  Chandra.  Principles  of  electric machines and power electronics. John Wiley & Sons, 2007.
[7] Husain, Iqbal. Electric and hybrid vehicles: design fundamentals. CRC press, 2010.
[8]  Hamed  Navabi.  Dynamical  Modeling  of  National Engine  EF7,  University  of  Amirkabir,  1396  (in Persian)
[9]  Bingham,  Timothy.  Development  of  a  Novel  and Energy  Efficient  Hybrid  Electric  Drivetrain. University of Surrey (United Kingdom), 2016.
[10]http://www.compotrade.ru/upload/variants/17/96129/4cea9fc20b26968820df31ab1cdc8dc1.pdf
[11]  Mashadi, Behrooz, and Seyed AM Emadi. "Dualmode  power-split  transmission  for  hybrid  electric vehicles."  IEEE  Transactions  on  Vehicular Technology, Vol. 59, No. 7, pp. 3223-3232, 2010
[12]  Gao, Yimin, and Mehrdad Ehsani.  "A torque and speed  coupling  hybrid  drivetrain-architecture, control, and simulation." IEEE transactions on power electronics, Vol. 21, No. 3, pp. 741-748, 2006
[13]  Chang,  Chih-Ming,  and  Jheng-Cin  Siao. "Performance  Analysis  of  EV  Powertrain  system with/without  transmission."  World  Electric  Vehicle Journal, Vol. 4, No. 3, pp. 629-634, 2010
[14] گزارش ها و اطلاعات عددی احتراق موتور ملی EF7 مرکز تحقیقات ایران خودرو (ایپکو)