ارزیابی قابلیت اطمینان بازوی لنگ موتور دیزلی به روش آزمون شتاب‌‌یافته

نویسندگان

1 دانشگاه فردوسی مشهد

2 دانشگاه فردوسی

3 دانشگاه صنعتی امیرکبیر

4 دانشگاه مورهد

چکیده

امروزه به دلیل رقابت تولیدکنندگان در کیفیت محصولات، معیارهای ارزیابی کیفیت در مراحل مختلف تولید از اهمیت به سزایی برخوردار اند. یکی از این معیارها، قابلیت اطمینان بوده که در بیشتر موارد از ارزیابی­‌های آماری داده­‌های خدمات پس از فروش  ناشی از بازگشت قابل توجهی از محصولات و یا به کمک آزمون‏‌های شتاب‏‌یافته در زمان تولید نمونه محاسبه می‏شود. در این پژوهش با اجرای آزمون­‌های شتاب‏‌یافته متنوع، در پنج شرایط متفاوت و متناسب با تنش­‌های وارده بر روی موتور دیزل، قطعه بازوی لنگ پس از هر آزمون­ ارزیابی شد. شاخص مورد نظر در تجزیه و تحلیل قابلیت اطمینان در این مطالعه زمان بین خرابی است که پس از جمع‌‏آوری و طبقه‏‌بندی داده­ها به کمک آزمون­های شتاب‏‌یافته، تأیید ماهیت توزیع مستقل و یکسان داده­ها به کمک سه آزمون میلیتاری-هندبوک، لاپلاس و اندرسون دارلینگ بررسی گردید. در نهایت نمودار توزیع قابلیت اطمینان بازوی لنگ در زمان‌­های مختلف کارکرد به کمک توزیع آماری لوگ- لجستیک، با توجه به بهترین تطابق با نتایج تجربی، ترسیم شد. نتایج به دست آمده نشان داد که قابلیت اطمینان بازوی لنگ بترتیب برای 177471 و 212753 کیلومتر کارکرد تجمعی برابر با 99 و 95 درصد خواهد شد و پس از 448240 کیلومتر به کمتر از 5 درصد خواهد رسید.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of reliability of diesel engine connecting rod by accelerated test method

نویسندگان [English]

  • hossein poursabbagh roknabadi 1
  • abbas rohani 2
  • Mohammad Hossein Aghkhani 2
  • Seyyed Mostafa Mirsalim 3
  • Kourosh Jenab 4
1
2
3
4
چکیده [English]

Nowadays, due to the competitive market, quality evaluation criteria at different stages of production are very important. One of these criteria is reliability, which is calculated using statistical evaluations of after-sales service data in most cases or with the help of accelerated tests at the early stage of the product development life cycle. In this research study, various accelerated test scenarios in proportion to the stresses on the diesel engine have been conducted to evaluate the lifetime of the connecting rod parts. The considered criterion for the reliability analysis is the time between failures which is evaluated after collecting and classifying the data using accelerated tests and confirming independent and uniform distribution of data via MIL-Hdbk, Laplace’s, and Anderson-Darling functions. Finally, the distribution diagram of reliability at different operating times was drawn using log-logistic statistical distribution, according to the best agreement with the experimental results. The results depicted that the reliability of the connecting rod would be equal to (0.99 @ 177417 hrs.) and (0.95@ 212753 hrs.) kilometers of cumulative operation, respectively, and after 448240 kilometers it would be less than 0.05.

کلیدواژه‌ها [English]

  • accelerated test method
  • Diesel engine
  • connecting rod
[1]  NASA  technical  standard, “www.standards.nasa.gov/  safety-quality-reliabilitymaintainability”. 2015.
[2] S. Glasstone, and K. J. Laidler, and H. E. Eyring, The Theory  of  Rate  Processes.  New  York:  McGraw-Hill, 1941.
[3]  M.  B.  Carey  and  R.  H.  Koenig,  "Reliability assessment based on accelerated degradation: a case study,"  in  IEEE  Transactions  on  Reliability,  Vol.  40, No. 5, pp. 499-506, 1991
[4]  M.  Rezaei,  Validation  of  engine  belt  tensioners mounting by Accelerated Life Testing. The Journal of Engine Research, No. 55, pp. 13-20, 2019
[5]  H.  Yanagihara,  A.  Tateno,  Accelerated  Mission Tests  and  Reliability  Improvement  of  F3-30  Engine. Proceedings  of  the  ASME  1990  International  Gas Turbine  and  Aeroengine  Congress  and  Exposition. Volume 2: Aircraft Engine; Marine; Microturbines and Small  Turbomachinery.  Brussels,  Belgium.  June  11–14, 1990.
[6]  P. Attibele, S. Makam,  Y. L. Lee, A comparison of real  world  and  accelerated  powertrain  endurance cycles  for  light  duty  vehicles,  Chrysler  Group  LLC, 2013.
[7]  F.  Ahdad,  C.  Beltrami,  L.  Bernardini,  Design  of thermal  mechanical  fatigue  accelerated  life  test criteria,  2008  ASME  International  Mechanical Engineering  Congress  and  Exposition,  IMECE  2008-68209, October 31-November 6, 2008.
[8]  S.  Mohire,  P.  Kathale,  M.  Chaskar,  and  V. Tendulkar,  Development  of  Accelerated  Life  Test Schedule for Rig Testing of Live Axles Based on Road Load Data and Its Correlation with Field. Tata Motors Ltd, SAE International 2018-01-0099. 2018.
[9]  S.  J.  Park.  S.  D.  Park.  K.  S.  Kim  and  J.  H.  Cho, Reliability evaluation for the pump assembly using an accelerated  test.  International  journal  of  pressure vessels and piping, Vol. 83, No. 4, pp. 283-286, 2006
[10]  S.  M.  Zaharia,  I.  Martinescu,  Management  of accelerated reliability testing, Technical Gazette  Vol. 23, No. 5, pp. 1447-1455, 2016
[11]  S.  M.  Zaharia,  I.  Martinescu,  C.  O.  Morariu,  Life time  prediction  using  accelerated  test  data  of  the sspecimens  from  mechanical  element.  Maintenance and Reliability, Vol. 14, No. 2, pp. 99–106, 2012
[12]  A.  Regattieri,  A.  Casto,  F.  Piana,  M.Faccio,  E. Ferrari,  Reliability  prediction  of  a  mechanical component  through  accelerated  life  testing,  24th International  Conference  on  Production  Research, ICPR 2017
[13]  A.  Vaysi,  A.  Rohani,  M.  Tabasizadeh,  Reliability evaluation  of vaccume  brake  booster in automative, the 4th national and 2nd international conference on applied  research  in  electrical,  mechanical, mechatronic  engineering,  malek-ahtar  university  of technology, 2017.
[14]  M.  Sadatomi,  and  H.  Ito,  A  Study  of  Reliability Evaluation of Main Bearings for Multicylinder Diesel Engines," SAE Int. J. Fuels Lubr, Vol.  9, No. 1, pp.  41-47, 2016
[15] A.Stoyanov. O. Stoyanov and E. Savev, Reliability evaluation  and  comparative  analysis  of  engines  for light-duty  vehicles  with  electronic  fuel  control systems  using  pareto  approach.  Machines. Technologies. Materials., Vol. 8, No. 8,  pp. 51-53. 2014
[16]  D.  Bose.  G.  Gliosli.  K.  Maiidal.  S.P.  Sau,  and  S. Kuuar.  Measurement  and  Evaluation  of  Reliability, Availability  and  Maintainability  of  a  Diesel Locomotive Engine. International Journal of Scientific and Research Publications, Vol. 3, No. 9, 1-18. 2013
[17]  Y. Hamano. N. Sagawa and H. Miyata. Reliability evaluation  of  ceramic  rotor  for  passenger-car turbochargers.  J.  Eng.  Gas  Turbines  Power  Vol.  108, No. 3, pp 531-535, 1986
[18]  S.  Dutta.  D.  Kumar  and  P.  Kumar,  P,  Reliability analysis of defence vehicles gear box assembly under preventive  maintenance.  Indian  Journal  of  Science andTechnology, Vol. 3, No. 3, pp. 328-331, 2010
[19] D. R. Dola, and S. Deshmukh. Reliability Ananlysis of Cooling System of Diesel Engine. Universal Journal of  Mechanical  Engineering,  Vol.  3,  No.  2,  pp.  57-62, 2015
[20]  S.A.  Sanikhani  and  M.  Rezaeian  Akbarzadeh, Dynamic Stress Analysis of Bogie Frame and Bolster of General Motors Locomotive GT26CW and Related Reliability  Evaluation,  MSc  thesis,  Department  of Mechanical  Engineering,  Amirkabir  University  of Technology, 2017.
[21]  A.  N.  Gots  and  S.  A.  Amirseyidov.  Analysis  of accelerated  methods  testing  piston  engine  for reliability. In IOP Conference Series: Materials Science and Engineering, 2021.
[22]  Pulkrabek,  W.W,  Engineering  Fundamentals  of the Internal Combustion Engine, Upper Saddle River, N.J: Prentice Hall. 1997.
[23] www.weibull.com/basics/fmea
[24]  A,  Küsters,  and  F,  Maassen,  Specific  Durability Testing  with  FEV  Master  Program,  SAE  Technical Paper 2010-01-0922, 2010.
[25]  F.  Harada,  Outline  of  IEC62506,  International Standard for Accelerated Reliability Testing and Key Points, the 23rd Spring Reliability Symposium of the Reliability Engineering Association of Japan", 2015
[26]  R.  Balamurugan,  R.  Kirubagharan,  R.  and  C. Ramesh, Implementation of lean tools and techniques in a connecting rod manufacturing industry. Materials Today: Proceedings, Vol. 33, pp. 3108-3113, 2020
[27]  W.H.  Chen,  L.  Gao,  J.  Pan,  Q.Ch.  He,  Design  of Accelerated Life Test Plans—Overview and Prospect. Chin. J. Mech. Eng. Vol. 31, No. 1, pp. 1-15, 2018
[28]  C.E.  Ebeling,  An  introduction  to  reliability  and maintainability  engineering,  Tata  McGraw-Hill Education; 2004.
[29] R. Billinton and R.N. Allan, Reliability evaluation of  engineering  systems.  New  York:  Plenum  press; 1992. 
[30]  B.  Bertsche,  Reliability  in  automotive  and mechanical engineering: determination of component and  system  reliability.  Springer  Science  &  Business Media. 2008.
[31] G. Pulcini, 2001. A bounded intensity process for the  reliability  of  repairable  equipment.  Journal  of Quality Technology, Vol. 33, No. 4, pp. 480-492, 2001
[32]  U.  Kumar,  and  B.  Klefsjö,  Reliability  analysis  of hydraulic  systems of LHD machines using the power law process model. Reliability Engineering & System Safety, Vol. 35, No. 3, pp. 217-224, 1992
[33] H. Soltanali, A. Rohani, M.H. Abbaspour-Fard, and J.T. Farinha, 2021. A comparative study of statistical and  soft  computing  techniques  for  reliability prediction of automotive manufacturing. Applied Soft Computing, Vol. 98, pp. 1-12, 2021
[34]  H.  Soltanali,  A.H.S.  Garmabaki,  A.  Thaduri,  A. Parida,  U.  Kumar,  and  A.  Rohani.  Sustainable production  process:  An  application  of  reliability, availability,  and  maintainability  methodologies  in automotive  manufacturing.  Proceedings  of  the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, Vol. 233, No. 4, pp. 682-697, 2019
[35] J. Chen. E. Zio. J. Li. Z. Zeng and C. Bu. Accelerated life  test  for  reliability  evaluation  of  pneumatic cylinders. IEEE Access, Vol. 6, pp. 75062-75075, 2018
[36]  M.  Zieja,  M.  Woch,  and  J.  Tomaszewska, Reliability  of  the  aircraft  in  the  Polish  operational aviation. In Safety and Reliability–Safe Societies in a Changing World, pp. 2277-2283, 2018
[37]  G.  Liberopoulos,  and  P.  Tsarouhas,  2005. Reliability analysis of an automated pizza production line. Journal of Food Engineering,  Vol. 69, No. 1,    79-96, 2005
[38] S. Sahu, P. Sarkar, and R. Davis, Quantification of uncertainty  in compressive  strength  of fly ash  brick masonry. Journal of Building Engineering, Vol. 26, pp. 100843, 2019
[39]  V. Agharazi and B. Salak, measarment of quality index of reliability of TU5 engine, forth international conference  of  internal  combustion  engine,  Tehran, 2006.
[40]  G.  Koszalka.  A.  Niewczas.  and  Pieniak,  D. Reliability  assessment  of  a  truck  engine  based  on measurements  of  combustion  chamber  tightness. International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (pp.  995-999). IEEE, 2012.
[41]  O.  Grytsyuk.  and  O.  Vrublevskyi.  Method  of Accelerated  Testing  of  Crankshaft  Shells  of  the Combustion  Engine  in  the  Operating  Process. Tribology in Industry, Vol. 41, No. 4, pp. 256, 2019