بهینه‌سازی چرخه آلی رانکین به منظور بازیابی گرمای اتلافی موتور سه استوانۀ پرخوران بنزینی

نویسندگان

دانشگاه صنعتی اصفهان

چکیده

در خودرو‌های سواری رایج، بیشترین هدر‌رفت انرژی از دو منبع دود راهگاه خروجی و سامانه خنک‌کننده موتور صورت می‌گیرد. مقاله حاضر با تمرکز بر این دو منبع گرمایی، عملکرد یک سامانه بازیابی گرمای اتلافی مبتنی بر چرخه آلی رانکین (چار)، در بازیافت انرژی اتلافی از موتور بنزینی یک خودروی سواری را بررسی کرده است. هدف از این پژوهش یافتن شرایط کاری بهینه چار و انتخاب بهترین سیال کاری به منظور استحصال بیشینه توان خالص خروجی از چرخه بازیابی است. برای دستیابی به این مقصود، الگوی ترمودینامیکی پایا و صفر بُعدی سامانه چار مبنا در نقطه‌ای از نقشه عملکرد موتور به عنوان نقطه معیار، که از شبیه‌سازی کارکرد خودرو بر اساس چرخه استاندارد رانندگی شهری بدست آمده، در نرم‌افزار ترموفلکس طراحی گردید. با در نظر گرفتن گستردگی تعداد و تنوع سیالات کاری، 23 سیال عامل اعم از سیالات خالص و مخلوط ارزیابی شدند، و همچنین شرایط کاری بهینه سامانه مبنا با در نظر گرفتن شار جرمی سیال عامل، نقطه طراحی چگالنده و فشار کاری گردا و چگالنده به عنوان متغیرهای طراحی برای هر ماده کاری از طریق بهینه‌سازی آن با روش سیمپلکس داونهیل استخراج گردید. در انتها با در اختیار داشتن داده‌های آزمایشگاهی برای 320 نقطه از نقشه کاری موتور، کارآیی چرخه مبنای بهینه‌شده در ترکیب با تمام منطقه عملکرد موتور ارزیابی شد. نتایج نشان داد بیشترین توان خالص استحصالی، از سیالات R507a ، R410a و R125 بدست آمده ‌است، که بیانگر عملکرد بهتر مخلوط‌های زئوتروپیک و آزئوتروپیک در بازیابی گرمای اتلافی موتور با چار است و در بهترین حالت در مناطق کم بار 2،6 کیلووات در منطقه اوج کارایی گرمایی 6،6 کیلووات توان خالص از چرخه استحصال شد.

کلیدواژه‌ها


عنوان مقاله [English]

Organic Rankine cycle optimization for waste heat recovery of three-cylinder turbocharged gasoline engine

نویسندگان [English]

  • Sepehr Khosravi shad
  • Iman Chitsaz
  • Mahdi Nili Ahmadabadi
چکیده [English]

In conventional passenger cars, two-third of the energy is wasted from the exhaust gas and engine cooling system. The present study has investigated the performance of a waste heat recovery (WHR) system based on the Organic Rankine Cycle (ORC) for the turbocharged gasoline direct injection engine. The optimal working conditions along with the best working fluid of the organic Rankin cycle to obtain the maximum net output power (NOP) from the recovery cycle are investigated. The steady-state zero-dimensional thermodynamic model of basic ORC at a series of engine operating conditions is designed in Thermoflex software. The working point of the engine has obtained by simulation of vehicle performance based on the standard urban driving cycle. Considering numerous and varied working fluids, 23 working fluids including pure and mixture fluids are evaluated. The mass flow rate of working fluid, condenser pinch, turbine inlet pressure, and condenser working pressure are considered as the optimization design variables and the optimum operating conditions of the basic ORC extracted for each working fluid using the Downhill Simplex method. Finally, by having experimental data for 320 points of the engines map, the efficiency of the optimized basic cycle was analyzed in combination with engine’s entire operating region. The results showed that R-507a, R-410a and R-125 present highest NOP respectively which indicate better performance of zeotropic and Azeotropic mixtures in engine WHR by ORC and for the best case, NOP reached to 2.6 kw in small load region and 6.6 kw in the peak thermal efficiency region.

کلیدواژه‌ها [English]

  • Waste heat recovery
  • Optimization of energy consumption
  • Organic Rankine Cycle
  • Downhill simplex method
  • Turbocharged Internal Combustion Engine
[1]  Rodrigue,  J.-P.,  The  geography  of  transport systems. 2020: Routledge.
[2]  Yao, M., Z. Zheng, and H. Liu, Progress and recent trends in homogeneous charge compression ignition (HCCI)  engines.  Progress  in  energy  and  combustion science, Vol. 35, No. 5, pp. 398-437, 2009
[3]  Feneley,  A.J.,  A.  Pesiridis,  and  A.M.  Andwari, Variable  geometry  turbocharger  technologies  for exhaust  energy  recovery  and  boosting‐A  Review. Renewable  and  sustainable  energy  reviews,  Vol.  71, pp. 959-975, 2017
[4] Murata Y, Kusaka J, Odaka M, Daisho Y, Kawano D, Suzuki  H,  Ishii  H,  Goto  Y.  Emissions  suppression mechanism  of  premixed  diesel  combustion  with variable valve timing. International Journal of Engine Research, Vol. 8, No. 5, pp. 415-428, 2007
[5]  Liu, T., Hu, X., Li, S.E. and Cao, D.,  Reinforcement learning  optimized  look-ahead  energy  management of  a  parallel  hybrid  electric  vehicle.  IEEE/ASME Transactions  on  Mechatronics,  Vol.  22,  No.  4,  pp. 1497-1507, 2017
[6] Fu, J., Liu, J., Feng, R., Yang, Y., Wang, L. and Wang, Y.,  Energy  and  exergy  analysis  on  gasoline  engine based  on  mapping  characteristics  experiment. Applied energy, Vol. 102, pp. 622-630, 2013
[7]  Payri,  F.,  Olmeda,  P.,  Martín,  J.  and  Carreño,  R., Experimental analysis of the global energy balance in a DI diesel engine. Applied Thermal Engineering, Vol. 89, pp. 545-557, 2015
[8]  Zhou,  Feng,  Shailesh  N.  Joshi,  Raphael  RhoteVaney,  and  Ercan  M.  Dede.  A  review  and  future application of Rankine Cycle to passenger vehicles for waste  heat  recovery.  Renewable  and  Sustainable Energy Reviews, Vol. 75, pp. 1008-1021, 2017
[9]  Freymann,  R.,  W.  Strobl,  and  A.  Obieglo,  The turbosteamer: A system introducing the principle of cogeneration  in  automotive  applications.  MTZ worldwide, Vol. 69, No. 5, pp. 20-27, 2008
[10]  Arias,  D.A.,  T.A.  Shedd,  and  R.K.  Jester, Theoretical analysis of waste heat recovery from an internal combustion  engine  in a hybrid vehicle. SAE Transactions, pp. 777-784, 2006 
[11]  Chintala, V., S. Kumar, and J.K. Pandey, A technical review  on  waste  heat  recovery  from  compression ignition  engines  using  organic  Rankine  cycle. Renewable and Sustainable Energy Reviews,  Vol. 81, pp. 493-509, 2018
[12]  Oomori, H. and S. Ogino, Waste heat recovery of passenger  car  using  a  combination  of  Rankine bottoming  cycle  and  evaporative  engine  cooling system. 1993, SAE Technical Paper.
[13]  Zhou,  F.,  E.  Dede,  and  S.  Joshi,  Application  of Rankine  cycle  to  passenger  vehicle  waste  heat recovery-A  review.  SAE  International  Journal  of Materials  and  Manufacturing,  Vol.  9,  No.  2,  pp.  224-235, 2016
[14]  Shi,  Lingfeng,  Gequn  Shu,  Hua  Tian,  and  Shuai Deng.  A  review  of  modified  Organic  Rankine  cycles (ORCs)  for  internal  combustion  engine  waste  heat recovery  (ICE-WHR).  Renewable  and  Sustainable Energy Reviews, Vol. 92, pp. 95-110, 2018
[15]  Singh,  D.V.  and  E.  Pedersen,  A  review  of  waste heat recovery technologies for maritime applications. Energy  conversion  and  management,  Vol.  111,  pp. 315-328, 2016
[16] Bao, J. and L. Zhao, A review of working fluid and expander  selections  for  organic  Rankine  cycle. Renewable  and  sustainable  energy  reviews,  Vol.  24, pp. 325-342, 2013
[17]  Endo,  T.,  Kawajiri,  S.,  Kojima,  Y.,  Takahashi,  K., Baba, T., Ibaraki, S., Takahashi, T. and Shinohara, M.,Study  on  maximizing  exergy  in  automotive  engines. SAE Transactions, pp. 347-356, 2007
[18]  Lion,  Simone,  Constantine  N.  Michos,  Ioannis Vlaskos,  Cedric  Rouaud,  and  Rodolfo  Taccani.  A review of  waste heat  recovery and Organic Rankine Cycles  (ORC)  in  on-off  highway  vehicle  Heavy  Duty Diesel  Engine  applications.  Renewable  and Sustainable  Energy  Reviews,  Vol.  79,  pp.  691-708, 2017
[19]  Saidur,  R.,  Rezaei,  M.,  Muzammil,  W.K.,  Hassan, M.H., Paria, S. and Hasanuzzaman, M.,  Technologies to recover  exhaust  heat  from  internal  combustion engines. Renewable and sustainable energy reviews, Vol. 16, No. 8, pp. 5649-5659, 2012
[20]  Vaja, I. and A. Gambarotta, Internal combustion engine (ICE) bottoming with organic Rankine cycles (ORCs). Energy, Vol. 35, No. 2, pp. 1084-1093, 2010
[21] Boretti, A., Recovery of exhaust and coolant heat with  R245fa  organic  Rankine  cycles  in  a  hybrid passenger  car  with  a  naturally  aspirated  gasoline engine. Applied Thermal Engineering, Vol. 36, pp. 73-77, 2012
[22]  Seher,  Dieter,  Thomas  Lengenfelder,  Jrgen Gerhardt, Nadja Eisenmenger, Michael Hackner, and Ilona  Krinn.  "Waste  heat  recovery  for  commercial vehicles  with  a  Rankine  process."  In  21st  Aachen colloquium  automobile  and  engine  technology,  vol. 2012. Aachen: RWTH Aachen University, 2012.
[23]  Lang,  W.,  P.  Colonna,  and  R.  Almbauer, Assessment of waste heat recovery from a heavy-duty truck  engine  by  means  of  an  ORC  turbogenerator. Journal of Engineering  for  Gas Turbines and  Power, Vol. 135, No. 4, 2013
[24] Chen, Tao, Weilin Zhuge, Yangjun Zhang, and Lei Zhang. "A novel cascade organic Rankine cycle (ORC) system  for  waste  heat  recovery  of  truck  diesel engines."  Energy  Conversion  and  Management,  Vol. 138, pp. 210-223, 2017
[25]  Panesar,  A.S.,  An  innovative  Organic  Rankine Cycle  system  for  integrated  cooling  and  heat recovery. Applied Energy, Vol. 186, pp. 396-407, 2017
[26]  Shu,  G.,  et  al.,  Parametric  and  working  fluid analysis of a dual-loop organic Rankine cycle (DORC) used in engine waste heat recovery. Applied Energy, Vol. 113, pp. 1188-1198, 2014
[27]  Song,  J.  and  C.-w.  Gu,  Parametric  analysis  of  a dual  loop  Organic  Rankine  Cycle  (ORC)  system  for engine waste  heat  recovery. Energy Conversion and Management, Vol. 105, pp. 995-1005, 2015
[28]  Wang, E. H., H. G. Zhang, Y. Zhao, B. Y. Fan, Y. T. Wu,  and  Q.  H.  Mu.  "Performance  analysis  of  a  novel system combining a dual loop organic Rankine cycle (ORC) with a gasoline engine." Energy,  Vol. 43, No. 1, pp. 385-395, 2012
[29]  Zhang,  H.,  E.  Wang,  and  B.  Fan,  A  performance analysis of a novel system  of a dual loop bottoming organic Rankine cycle (ORC) with a light-duty diesel engine.  Applied  energy,  Vol.  102,  pp.  1504-1513, 2013
[30] Kim, Young Min, Dong Gil Shin, Chang Gi Kim, and Gyu Baek Cho. "Single-loop organic Rankine cycles for engine waste heat recovery using both low-and hightemperature heat sources." Energy,  Vol. 96, pp. 482-494, 2016
[31]  Jiménez-Arreola,  M.,  C.  Wieland,  and  A. Romagnoli, Direct vs indirect evaporation in Organic Rankine  Cycle  (ORC)  systems:  A  comparison  of  the dynamic behavior for waste heat recovery of engine exhaust. Applied Energy, Vol. 424, pp. 439-452, 2019
[32]  Srinivasan,  K.K.,  P.J.  Mago,  and  S.R.  Krishnan, Analysis of exhaust waste heat recovery from a dual fuel  low  temperature  combustion  engine  using  an Organic  Rankine  Cycle.  Energy,  Vol.  35,  No.  6,  pp. 2387-2399, 2010
[33]  Yue,  C.,  L.  Tong,  and  S.  Zhang,  Thermal  and economic  analysis  on  vehicle  energy  supplying system based on waste heat recovery organic Rankine cycle. Applied Energy, Vol. 248, pp. 241-255, 2019
[34]  Tian,  H.,  et  al.,  Fluids  and  parameters optimization  for  the  organic  Rankine  cycles  (ORCs) used in exhaust heat recovery of Internal Combustion Engine (ICE). Energy,  Vol. 47, No. 1, pp. 125-136,  2012
[35]  Chahartaghi,  M.  and  M.  Babaei,  Energy  and exergy analysis of Organic Rankine Cycle with using two component working fluid in specified heat source conditions. Modares Mechanical Engineering, Vol. 14, No. 3, pp. 145-156, 2014
[36] Invernizzi, C. and D. Bonalumi, Thermal stability of organic fluids for Organic Rankine Cycle systems, in Organic Rankine cycle (ORC) power systems. Elsevier. pp. 121-151, 2017
[37]  Panesar,  A.S.,  An  innovative  organic  Rankine cycle  approach  for  high  temperature  applications. Energy, Vol. 115, pp. 1436-1450, 2016
[38]  Fang,  Y.,  F.  Yang,  and  H.  Zhang, Comparative analysis and multi-objective optimization of organic Rankine  cycle (ORC) using  pure  working  fluids  and their zeotropic mixtures for diesel engine waste heat recovery. Applied Thermal Engineering,  Vol. 157, pp. 113704, 2019
[39]  Wang,  Jiangfeng,  Zhequan  Yan,  Man  Wang, Maoqing  Li,  and  Yiping  Dai.  "Multi-objective optimization  of  an  organic  Rankine  cycle  (ORC)  for low  grade  waste  heat  recovery  using  evolutionary algorithm." Energy Conversion and Management, Vol. 71, pp. 146-158, 2013
[40]  Rosset, K., et al., Multi-objective optimization of turbo-ORC  systems  for  waste  heat  recovery  on passenger car engines. Energy, Vol. 159, pp. 751-765, 2018
[41] Roy, J. and A. Misra, Parametric optimization and performance  analysis  of  a  regenerative  Organic Rankine  Cycle  using  R-123  for  waste  heat  recovery. Energy, Vol. 39, No. 1, pp. 227-235, 2012
[42]  Roy,  J.,  M.  Mishra,  and  A.  Misra,  Parametric optimization  and  performance  analysis  of  a regenerative organic  rankine  cycle  using  low–grade waste  heat  for  power  generation.  International Journal of Green Energy, Vol. 8, No. 2, 173-196, 2011
[43]  Roy,  J.,  M.  Mishra,  and  A.  Misra,  Parametric optimization  and  performance  analysis  of  a  waste heat recovery  system  using  Organic  Rankine  Cycle. Energy, Vol. 35, No. 12, pp. 5049-5062, 2010
[44] Jiménez-Arreola, Manuel, Roberto Pili, Fabio Dal Magro,  Christoph  Wieland,  Srithar  Rajoo,  and Alessandro Romagnoli. "Thermal power fluctuations in waste heat to power systems: An overview on the challenges  and  current  solutions."  Applied  Thermal Engineering, Vol. 134, pp. 576-584, 2018
[45] Johnson, G., International Engine and Powertrain of the Year Awards. 2019.
[46]  Souhaite,  Philippe,  and  Smaïl  Mokhtari. "Combustion system design of the new PSA Peugeot Citroën  EB  TURBO  PURE  TECH  engine."  In Internationaler  Motorenkongress  Springer  Vieweg, Wiesbaden, 2014, pp. 49-72, 2014
[47]  سینا انتظاری، تحلیل انرژی و اگزرژی موتور اشتعال جرقه ای سه سیلندر مجهز به توربوشارژر و استفاده از ورتکس تیوب برای بازیابی انرژی دود خروجی از موتور، 1398، دانشگاه صنعتی شریف، دانشکده مهندسی مکانیک، پایان نامه کارشناسی ارشد، استاد راهنما دکتر سیامک کاظم زاده حنانی
[48]  Chen,  H.,  D.Y.  Goswami,  and  E.K.  Stefanakos,  A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable and sustainable energy reviews,  Vol. 14, No. 9, pp. 3059-3067, 2010
[49]  Gao,  Zhiming,  J.  C.  Conklin,  C.  Stuart  Daw,  and Veerathu K. Chakravarthy. "A proposed methodology for estimating transient engine-out temperature and emissions  from  steady-state  maps."  International Journal  of  Engine  Research,  Vol.  11,  No.  2,  pp.  137-151, 2010
[50]  Eriksson,  K.  and  H.  Persson,  Performance  and size  assessment  of  ORCs  in  mobile  military  power generation. 2015.
[51]  Heberle,  F.,  M.  Preißinger,  and  D.  Brüggemann, Zeotropic  mixtures  as  working  fluids  in  Organic Rankine  Cycles  for  low-enthalpy  geothermal resources. Renewable Energy,  Vol. 37 No. 1, pp. 364-370, 2012
[52]  Mahmoudi, A., M. Fazli, and M. Morad, A recent review  of  waste  heat  recovery  by  Organic  Rankine Cycle.  Applied  Thermal  Engineering,  Vol.  143,  pp. 660-675, 2018
[53]  Scaccabarozzi,  Roberto,  Michele  Tavano, Costante  Mario  Invernizzi,  and  Emanuele  Martelli. "Thermodynamic Optimization of heat recovery ORCs for  heavy  duty  Internal  Combustion  Engine:  Pure fluids  vs.  zeotropic mixtures."  Energy  Procedia,  Vol. 129, pp. 168-175, 2017
[54]  Desai,  N.B.  and  S.  Bandyopadhyay,  Process integration of organic Rankine cycle. Energy,  Vol. 34, No. 10, pp. 1674-1686, 2009
[55]  Liu,  B.-T.,  K.-H.  Chien,  and  C.-C.  Wang,  Effect  of working  fluids  on  organic  Rankine  cycle  for  waste heat recovery. Energy,  Vol. 29, No. 8, pp. 1207-1217, 2004
[56]  Douvartzides,  S.  and  I.  Karmalis.  Working  fluid selection for the Organic Rankine Cycle (ORC) exhaust heat  recovery  of  an  internal  combustion  engine power  plant.  in  IOP  conference  series:  materials science and engineering. 2016. IOP Publishing