بررسی رفتار ارتعاشی پرخوران در اثر گرفتگی صافی ذرات دوده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک بیوسیستم‏، دانشگاه تربیت مدرس، تهران، ایران

2 مرکز تحقیق، طراحی و تولید موتور ایران‌خودرو، تهران، ایران

چکیده

در موتور‏های دیزل، به دلایلی چون افزایش توان و بازده، کاهش حجم، کاهش وزن و افزایش کیفیت احتراق، استفاده از پرخوران بسیار پرکاربرد است. یکی از مشکلات رایج در موتور‏های دیزل، صافی جذب ذرات دوده موجود در مسیر خروجی پرخوران است که پس از مدتی دچار گرفتگی می‏‌شود. صافی مسدود شده مانع عبور گاز‏های خروجی با شار لازم شده و در نتیجه فشار برگشتی و دمای گاز‏های خروجی افزایش می‌­یابد. این عامل سبب قرار گرفتن پرخوران در نزدیکی بازه عملیاتی ناپایدار شده و انتظار می­‌رود این عوامل سبب تغییر رفتار ارتعاشی این مجموعه گردد. در این تحقیق با ایجاد چند سطح گرفتگی صافی ذرات دوده در دور‏های 2500 و 3200 د.د.د، اقدام به ذخیره داده‏‏‏‌های ارتعاشی پرخوران گردید. با این روش غیرمخرب می‌­توان داده‌های دقیق‌­تری برای انجام عمل رفع گرفتگی فعال صافی دوده نسبت به روش رایج به دست آورد. با استفاده از تبدیل فوریه سریع بر روی داده زمانی ذخیره شده و صافی کردن بازه مورد انتظار از داده، بسامد‏های کاری پرخوران مشخص شده و با استخراج ویژگی­‏‌های حوزه بسامد و مقایسه آن­ها مشاهده شد که چگالی طیف توان و شار طیفی وضوح حدود 4 برابری نسبت به سایر ویژگی­‌ها در نمایان­‌سازی این رویداد را دارد. همچنین با تُند شدن دور موتور، گرفتگی صافی دوده تأثیر بیشتری در رفتار ارتعاشی پرخوران گذاشته و می­‌توان با تغییرات ایجاد شده به گرفتگی آن پی برد.

کلیدواژه‌ها


عنوان مقاله [English]

Vibration analysis of turbocharger in different clogging conditions of Diesel Particle Filter (DPF)

نویسندگان [English]

  • Adib Souzani 1
  • Barat Ghobadian 1
  • Mohammad Kazemi 2
  • Alireza Mahdavian 1
1 Department of Biosystems Engineering, Tarbiat Modares University, Tehran, Iran
2 Iran Khodro Powertrain Company (IPCO), Tehran, Iran
چکیده [English]

In diesel engines, for reasons such as increasing power and efficiency, reducing volume, reducing weight and increasing combustion quality, it is very common to employ a turbocharger. One of the most common problems in diesel engines is the absorption of soot particles in the turbocharger outlet, which clogged after a while. The blocked filter prevent to exhaust the gases with required flow rate, as a result, the back pressure and temperature of exhaust gases increase. This factor causes the turbocharger to be located near the unstable operating range and these factors expected to change the vibration behavior of this set. In this study, by creating several levels of soot particle clogging at 2500 and 3200 RPM, the turbocharger vibration signal was stored. Using this non-destructive method, more accurate data obtained to perform active Regeneration than the conventional method. Employing fast Fourier transform on stored time signal and filtering expected range of the signal, the turbocharger operating frequencies were determined and by extracting the frequency domain characteristics and comparing them, it observed that the power spectrum density and spectral flux had a resolution of approx. It has 4 times more than other features in indexing this event. In addition, as the engine speed increases, the soot filter clogging has a greater effect on the vibration behavior of the turbocharger.

کلیدواژه‌ها [English]

  • Turbocharging
  • Vibrational Behavior
  • Diesel Particle Filter
[1] A. Romagnoli, R. Martinez-Botas, Heat transfer analysis in a turbocharger turbine: An experimental and computational evaluation, Applied Thermal Engineering, 38 (2012) 58-77, https://doi.org/10.1016/j.applthermaleng.2011.12.022.
[2] S. Shaaban, Experimental investigation and extended simulation of turbocharger non-adiabatic performance, Ph.D. Thesis, Hannover University, (2004), Germany.
[3] D. Crescenzo, V. Olsson, J.A. Sola, H. Wu, A. Cronhjort, E. Lycke, O. Leufven, O. Stenlaas, Turbocharger speed estimation via vibration analysis, SAE Technical Paper 2016-01-0632, (2016). https://doi.org/10.4271/2016-01-0632.
[4] J. Fang, Z. Meng, J. Li, Y. Du, Y. Qin, Y. Jiang, W. Bai, G.G. Chase, The effect of operating parameters on regeneration characteristics and particulate emission characteristics of diesel particulate filters, Applied Thermal Engineering, 148 (2019) 860-867, https://doi.org/10.1016/j.applthermaleng.2018.11.066.
[5] G. Schäffner, K. Rusch, D. Chatterjee, G. Zitzler, Diesel Particulate Filter: Exhaust aftertreatment for the reduction of soot emissions, MTU Friedrichshafen GmbH, (2014), Germany.
[6] G. Kadijk, Roadworthiness Test Investigations of Diesel Particulate Filters Roadworthiness test investigations of diesel particulate filters, TNO: Innovation for life, (2013), Netherlands.
[7] F. Terres, J. Michelin, H. Weltens, Soot filtration and regeneration behaviour of particulate filters for diesel passenger cars, MTZ worldwide, 63/7 (2002) 10-14. https://doi.org/10.1007/BF03227555.
[8] A.S. Willsky, A survey of design methods for failure detection in dynamic systems, Automatica, 12/6 (1976) 601-611. https://doi.org/10.1016/0005-1098(76)90041-8.
[9] N. Baydar, A. Ball, Detection of gear failures via vibration and acoustic signals using wavelet transform, Mechanical Systems and Signal Processing, 17/4 (2003) 787-804. https://doi.org/10.1006/mssp.2001.1435.
[10] H. Ahmadi, K. Mollazade, A practical approach to electromotor fault diagnosis of Imam Khomaynei silo by vibration condition monitoring, African Journal of Agricultural Research, 4/4 (2009) 383-388, https://doi.org/10.5897/AJAR.9000011.
[11] S.-t. Wan, H.-m. Li, Z.-f. Xu, Y.-g. Li, Analysis of Generator Vibration Characteristic on Stator Winding Inter-Tum Short Circuit Fault, PROCEEDINGS-CHINESE SOCIETY OF ELECTRICAL ENGINEERING, (2004).
[12] L.F. Villa, A. Reñones, J.R. Perán, L.J. de Miguel, Angular resampling for vibration analysis in wind turbines under non-linear speed fluctuation, Mechanical Systems and Signal Processing, 25/6 (2011) 2157-2168. https://doi.org/10.1016/j.ymssp.2011.01.022.
[13] M.M. Ettefagh, M.H. Sadeghi, V. Pirouzpanah, H. Arjmandi Tash, Knock detection in spark ignition engines by vibration analysis of cylinder block: A parametric modeling approach, Mechanical Systems and Signal Processing, 22/6 (2008) 1495-1514. https://doi.org/10.1016/j.ymssp.2007.11.027.
[14] R. Kunze, The environmental challenge for the automotive industry, MSc in Automotive Systems Engineering Course Notes, Loughborough University, (2004).
[15] P. Magar, S. Anwar, A. Izadian, A Virtual Sensor for Soot Load Estimation in Diesel Particulate Filters. Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition. Volume 4A: Dynamics, Vibration, and Control, (9-15 November 2018), Pittsburgh, Pennsylvania, USA.
[16] N. Aretakis, K. Mathioudakis, M. Kefalakis, K. Papailiou, Turbocharger Unstable Operation Diagnosis Using Vibroacoustic Measurements. Proceedings of the ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. Volume 1: Turbo Expo 2003, (16-19 June 2003), Atlanta, Georgia, USA.
[17] A.V. Pai, S. Walsh, D. O'Boy, R. Chen, Turbocharger surge noise measurement and solution using experimental techniques, The 22nd International Congress on Sound and Vibration (ICSV22), (12-16 July 2015), Florence, Italy.
[18] J.A. Calvo, V. Diaz, J.L. San Roman, Controlling the turbocharger whistling noise in diesel engines, International Journal of Vehicle Noise and Vibration, 2/1 (2006) 17-28. https://doi.org/10.1504/IJVNV.2006.008524.
[19] O. Chiavola, F. Palmieri, E. Recco, Vibration analysis to estimate turbocharger speed fluctuation in diesel engines, Energy Procedia, 148 (2018) 876-883, https://doi.org/10.1016/j.egypro.2018.08.107.
[20] O. Chiavola, F. Palmieri, E. Recco, Turbocharger speed estimation via vibration measurements for combustion sensing, Energy Procedia, 126 (2017) 842-849, https://doi.org/10.1016/j.egypro.2017.08.281.
[21] F. Ponti, V. Ravaglioli, M. De Cesare, Estimation methodology for automotive turbochargers speed fluctuations due to pulsating flows, Journal of Engineering for Gas Turbines and Power, 137/12 (2015), https://doi.org/10.1115/1.4030839.
[22] G. Vichi, I. Stiaccini, M. Becciani, G. Ferrara, L. Ferrari, A. Bellissima, R. Minamino, Detection of Cylinder-to-Cylinder Injection Variation in a Four-Stroke Diesel Engine by Monitoring the Turbocharger Speed, SAE Technical Paper 2015-32-0761, (2015).
[23] P. Girdhar, 2004. Practical machinery vibration analysis and predictive maintenance, Elsevier Science, (2004), ISBN: 9780080480220, 0080480225.
[24] M.L. Adams, Rotating Machinery Vibration: From Analysis To Troubleshooting, Marcel Dekker, (2000), ISBN: 9780429207471, 0429207476.
[25] A. Mertins, Signal analysis: wavelets, filter banks, time-frequency transforms and applications, J Wiley, (1999), ISBN: 9780470852446, 0470852445.
[26] B. Boashash, Time-Frequency Signal Analysis and Processing: A Comprehensive Reference, Elsevier Science, (2015), ISBN: 9780123985255, 0123985250.