شبیه‌سازی خودروی مجهز به پیل سوختی غشاء تبادل پروتونی و بررسی اثر پارامترهای مرتبط

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه صنعتی اراک، اراک، ایران

چکیده

در این مقاله، ضمن بررسی استفاده از پیل سوختی در خودرو و تحقیقات گذشته، مدل‌سازی خودرو مجهز به پیل سوختی با نرم‌افزار GT-SUITE انجام شده است. در این مدل‌سازی جزئیات مختلفی در نظر گرفته شده و از مشخصات یک خودروی نمونه استفاده شده است. در ادامه اثر پارامترهای مؤثر بر عملکرد پیل سوختی غشای پلیمری با انجام شبیه‌سازی، بررسی شده است. شرایط شبیه‌سازی با درنظرگرفتن وجود سامانه مدیریت باتری به دست آمده است. نتایج به‌دست‌آمده نشان داد که با افزایش تعداد سلول‌های سوختی و مساحت سطح سلول‌های سوختی، توان خروجی پیل سوختی افزایش می‌یابد. همچنین با توجه به شبیه‌سازی انجام شده با افزایش ضخامت سلول‌های سوختی توان خروجی پیل سوختی ثابت می‌ماند. اگرچه بعضی نتایج از لحاظ کیفی قابل پیش‌بینی بوده است ولی دانستن مقدار تأثیر این پارامترها در طراحی بسیار مهم است. در ادامه نیز اثر ضریب انتقال بار و ضریب افت انتقال جرم پیل سوختی مورد بررسی قرار گرفت. نتایج نشان دهنده حساسیت هر پارامتر بر عملکرد پیل سوختی است و مشخص گردید که اثر پارامترهای تعداد سلول‌های سوختی و مساحت سطح سلول‌های سوختی، نسبت به سایر پارامترها بارزتر است. همچنین در این شبیه‌سازی‌ها اثر تغییرات انجام شده بر دمای متوسط پیل سوختی مورد ارزیابی قرار گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

Simulation of a vehicle equipped with a proton exchange membrane fuel cell and investigating the effect of related parameters

نویسندگان [English]

  • Abolfazl Mohammadebrahim
  • Alireza kocharian
Department of Mechanical Engineering, Arak University of Technology, Arak, Iran
چکیده [English]

In this paper, while examining the use of fuel cells in vehicles and past research, modeling of vehicles equipped with fuel cells with GT-SUITE software has been performed. In this modeling, various details have been considered and the specifications of a model vehicle have been used. In the following, the effect of effective parameters on the performance of the polymer membrane fuel cell is investigated. The simulation conditions are obtained by considering the existence of battery management system. The obtained results showed that with increasing the number of fuel cells and the surface area of the fuel cells, the output power of the fuel cell increases. Also, according to the simulation performed, with increasing the thickness of the fuel cells, the output power of the fuel cell remains constant. Although some results have been qualitatively predictable, it is important to know the impact of these parameters on the design. Then, the effect of load transfer coefficient and mass transfer coefficient of fuel cell mass was investigated. The results show the sensitivity of each parameter on the performance of the fuel cell and it was found that the effect of the parameters of the number of fuel cells and the surface area of the fuel cells is more pronounced than other parameters. Also, in these simulations the effect of changes made on the average temperature of the fuel cell was evaluated.

کلیدواژه‌ها [English]

  • Proton exchange Membrane Fuel Cell
  • GT-Suite
  • Battery Management System
  • Output Power
  • Average Fuel Cell Temperature
[1] A. Hawkes, D.J.L. Brett, N.P. Brandon, Fuel cell micro-CHP techno-economics: Part 1 – model concept and formulation, International Journal of Hydrogen Energy, 34/23 (2009) 9545-9557, https://doi.org/10.1016/j.ijhydene.2009.09.094.
[2] W. Yuan, Y. Tang, M. Pan, Z. Li, B. Tang, Model prediction of effects of operating parameters on proton exchange membrane fuel cell performance, Renewable Energy, 35/3 (2010) 656-666, https://doi.org/10.1016/j.renene.2009.08.017.
[3] B. Larbi, W. Alimi, R. Chouikh, A. Guizani, Effect of porosity and pressure on the PEM fuel cell performance, International Journal of Hydrogen Energy, 38/20 (2013) 8542-8549, https://doi.org/10.1016/j.ijhydene.2012.11.022.
[4] D.H. Jeon, K.N. Kim, S.M. Baek, J.H. Nam, The effect of relative humidity of the cathode on the performance and the uniformity of PEM fuel cells, International Journal of Hydrogen Energy, 36/19 (2011) 12499-12511, https://doi.org/10.1016/j.ijhydene.2011.06.136.
[5] M.S. Ekrami-Kakhki, N. Farzaneh, S. Abbasi, Improved Electrocatalytic Activity of Pt-SrCoO3-δ Nanoparticles Supported on Reduced Graphene Oxide for Methanol Electrooxidation, Journal of Advanced Materials and Technologies, 8/3 (2019) 49-58, https://doi.org/10.30501/jamt.2019.93884. (in Persian)
[6] M.S. Ismail, K.J. Hughes, D.B. Ingham, L. Ma, M. Pourkashanian, Effects of anisotropic permeability and electrical conductivity of gas diffusion layers on the performance of proton exchange membrane fuel cells, Applied Energy, 95 (2012) 50-63, https://doi.org/10.1016/j.apenergy.2012.02.003.
[7] A. Ahmed, F.H. Mangi, M. Kashif, F.A. Chachar,  Z. Ullah, Parametric Analysis of a Serpentine Flow Pattern Proton Exchange Membrane Fuel Cell for Optimized Performance, International Journal of Heat and Technology, 38/1 (2020) 69-76, https://doi.org/10.18280/ijht.380108.
[8] S.W. Perng, H.W. Wu, A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEMFC, Applied Energy, 143 (2015) 81-95, https://doi.org/10.1016/j.apenergy.2014.12.059.
[9] E. Fontana, E. Mancusi, A. da Silva, V.C. Mariani, A.A.U. de Souza, S.M.A.G.U. de Souza, Study of the effects of flow channel with non-uniform cross-sectional area on PEMFC species and heat transfer, International Journal of Heat and Mass Transfer, 54/21-22 (2011) 4462-4472, https://doi.org/10.1016/j.ijheatmasstransfer.2011.06.037.
[10] M.Z. Chowdhury, O. Genc, S. Toros, Numerical optimization of channel to land width ratio for PEM fuel cell, International Journal of Hydrogen Energy, 43/23 (2018) 10798-10809, https://doi.org/10.1016/j.ijhydene.2017.12.149.
[11] I. Khazaee, H. Sabadbafan, Numerical study of changing the geometry of the flow field of a PEM fuel cell, Heat and Mass Transfer, 52/5 (2016) 993-1003, https://doi.org/10.1007/s00231-015-1621-4.
[12] A. Torkavannejad, H. Sadeghifar, N. Pourmahmoud, F. Ramin, Novel architectures of polymer electrolyte membrane fuel cells: efficiency enhancement and cost reduction, International Journal of Hydrogen Energy, 40/36 (2015) 12466-12477, https://doi.org/10.1016/j.ijhydene.2015.07.038.
[13] B.Osanloo, A. Mohammadi-Ahmar, A. Solati, A numerical analysis on the effect of different architectures of membrane, CL and GDL layers on the power and reactant transportation in the square tubular PEMFC, International Journal of Hydrogen Energy, 41/25 (2016) 10844-10853, https://doi.org/10.1016/j.ijhydene.2016.04.228.
[14] A. Mohammadi-Ahmar, B. Osanloo. A. Solati, J. Ghasemi, Performance improvement of the circular tubular PEMFC by using different architectures and number of layers, Energy Conversion and Management, 128 (2016) 238-249, https://doi.org/10.1016/j.enconman.2016.09.074.
[15] A. Mohammadi-Ahmar, A. Solati, B. Osanloo, M. Hatami, Effect of number and arrangement of separator electrode assembly (SEA) on the performance of square tubular PEM fuel cells, Energy, 137 (2017) 302-313, https://doi.org/10.1016/j.energy.2017.07.021.
[16] H. Sadeghi, I. Mirzaei, S. Khalilaria, S. Rezazadeh, M. Rasouli Gareveran, Numerical Investigation of Proton Exchange Membrane Fuel Cell Performance Enhancement by Geometrical Configuration Changing, Journal of Renewable Energy and Environment, 6/4 (2019) 41-48, https://doi.org/10.30501/jree.2019.102828.
[17] W. Gołębiewski, M. Lisowski, Theoretical analysis of electric vehicle energy consumption according to different driving cycles, IOP Conference Series: Materials Science and Engineering, 421/2 (2018), https://doi.org/10.1088/1757-899X/421/2/022010.
[18] H.A. Gabbar, A.M. Othman, M.R. Abdussami, Review of Battery Management Systems (BMS) Development and Industrial Standards, Technologies, 9/2 (2021), https://doi.org/10.3390/technologies9020028.