تحلیل عددی و تجربی ارتعاشات جانبی محور یک پرخوران در شرایط ایستا و دورانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مجتمع دانشگاهی مکانیک، دانشگاه صنعتی مالک اشتر، اصفهان، ایران

2 دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان، اصفهان، ایران

3 دانشکده مهندسی مکانیک، دانشگاه مموریال، نیوفاندلند و لابرادور، کانادا

چکیده

بررسی دینامیکی و تحلیل ارتعاشی محور دواری با سرعت تُند، در مراحل طراحی و توسعه ماشین‌های دوار امری ضروری است. محور دوار سرعت‌ تُند در پرخوران‏ها شامل قرص‌های دوار با شکل‌های مختلف، محور دارای قطر متغیر و یاتاقان‌های نصب‌شده در موقعیت‌های مختلف می‌شود. ارتعاشات محور دوار در حالت کاری می‌تواند باعث خرابی قطعات موتور یا حتی از کارافتادگی کل موتور شود. در این مقاله، ارتعاشات جانبی محور دوار یک پرخوران در شرایط ایستا و دورانی، با استفاده از یک الگوی اجزاء محدود و با اجزاء تیر تیموشنکو تحلیل شد. نمودار سرعت-بسامد، سرعت‌های بحرانی، تغییر شکل سازه در حالت کاری و پاسخ به نامیزانی محور دوار از نتایج تحلیل دینامیکی عددی محور دوار در شرایط کاری هستند. همچنین، آزمون ارتعاش‌‎‏سنجی محیطی به روش تجزیه بسامدها، در حالت غیر دورانی بر روی محور دوار انجام ‌شده است. در آزمون ارتعاش‌سنجی، به‌طور هم‌زمان از دستگاه ارتعاش‌سنج لیزر داپلر و حسگرهای شتاب‌سنج پیزوالکتریک، به‌منظور اندازه‌گیری دقیق ارتعاشات استفاده ‌شده است. تطابق نتایج عددی و تجربی نشان‌دهنده دقت تحلیل انجام ‌شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical and experimental analysis of lateral vibration of a turbocharger rotor in rotating and non-rotating conditions

نویسندگان [English]

  • Bherouz Shahriari 1
  • Mostafa Ghayour 2
  • Mohammad Hadi Jalali 3
  • Mohsen Bahrami 1
1 Faculty of Mechanics, Malek Ashtar University of Technology, Isfahan, Iran
2 Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
3 Department of Mechanical Engineering, Memorial University, Newfoundland and Labrador, Canada
چکیده [English]

Dynamic analysis and modal analysis of high speed rotors are a vital step in the design and development stages of rotating machines. Turbomachine rotor consists of disks of various shapes, shafts whose diameters change depending on their longitudinal position, and bearings situated at various positions. The vibrations of the rotor in the operating conditions can cause catastrophic failure of the parts or even the whole turbomachine. In this paper, lateral vibrations of a turbocharger rotor in non-rotating and rotating conditions are analyzed numerically using a finite element model based on Timoshenko beam elements. The Campbell diagram, critical speeds, operational deflection shapes and unbalance response of the rotor are the results of numerical dynamic analysis in the operating conditions. Also, the ambient modal testing of the rotor in non-rotating conditions is performed using frequency domain decomposition (FDD) method. In the modal testing, the laser doppler vibrometer and piezoelectric accelerometers are used simultaneously in order to exactly measure the vibrations. The good agreements between the numerical and experimental results show the accuracy of analyses.

کلیدواژه‌ها [English]

  • Turbocharger
  • High Speed Rotor
  • Numerical and Experimental Analysis
  • Lateral Vibration
  • Ambient Modal Testing
[1] R. Brincker, L. Zhang, P. Andersen, Modal identification of output only systems using frequency domain decomposition, Smart Materials and Structures, 10/3 (2001) 441- 445, https://doi.org/10.1088/0964-1726/10/3/303.
[2] D.J. Ewins, Modal Testing: Theory, Practice and Application, 2nd ed., Research Studies Press, (2000), ISBN: 9780471975182, 0471975184.
[3] G. Genta, Dynamics of Rotating Systems, Springer, (2005), ISBN: 9780387209364, 0387209360.
[4] E. Brusa, G. Zolfini, Dynamics of multi-body rotors: numerical and experimental FEM analysis of the scientific earth experiment Galileo Galilei Ground, Meccanica, 37/3 (2002) 239-254, https://doi.org/10.1023/A:1020147020815.
[5] E. Chatelet, F. D’Ambrosio, G. Jacquet-Richardet, Toward global modelling approaches for dynamic analyses of rotating assemblies of turbomachines, Journal of Sound and Vibration, 282/1-2 (2005) 163-178, https://doi.org/10.1016/j.jsv.2004.02.035.
[6] C. Yang, S. Huang, Coupling vibrations in rotating shaft-disk-blades system, Journal of Vibrations and Acoustics, 129/1 (2007) 48-57, https://doi.org/10.1115/1.2221328.
[7] R. Whalley, A. Abdul-Ameer, Contoured shaft and rotor dynamics, Mechanism and Machine Theory, 44/4 (2009) 772-783, https://doi.org/10.1016/j.mechmachtheory.2008.04.010.
[8] A. Lazarus, B. Prabel, D. Combescure, A 3D finite element model for the vibration analysis of asymmetric rotating machines, Journal of Sound and Vibration, 329/18 (2010) 3780-3797, https://doi.org/10.1016/j.jsv.2010.03.029.
[9] D. Laxalde, J. Lombard, F. Thouverez, Dynamics of multi-stage bladed disks systems, Journal of Engineering for Gas Turbines and Power, 129/4 (2007) 1058-1064, https://doi.org/10.1115/1.2747641.
[10] D. Laxalde, C. Pierre, Modelling and analysis of multi-stage systems of mistuned bladed disks, Computers and Structures, 89/3-4 (2011) 316-324, https://doi.org/10.1016/j.compstruc.2010.10.020.
[11] D. Laxalde, F. Thouverez, J.P. Lombard, Dynamical analysis of multi-stage cyclic structures, Mechanics Research Communications, 34/4 (2007) 379-384, https://doi.org/10.1016/j.mechrescom.2007.02.004.
[12] H. Taplak, M. Parlak, Evaluation of gas turbine rotor dynamic analysis using the finite element method, Measurement, 45/5 (2012) 1089-1097, https://doi.org/10.1016/j.measurement.2012.01.032.
[13] G. Creci, J.C. Menezes, J.R. Barbosa, J.A. Corra, Rotor dynamic analysis of a 5-Kilonewton thrust gas turbine by considering bearing dynamics, Journal of Propulsion and Power, 27/2 (2011) 330-336, https://doi.org/10.2514/1.B34104.
[14] M.H. Jalali, M. Ghayour, S. Ziaei-Rad, B. Shahriari, Dynamic analysis of high speed rotor-bearing system, Measurement, 53 (2014) 1-9, https://doi.org/10.1016/j.measurement.2014.03.010.
[15] A. Senatore, Measuring the natural frequencies of centrifugally tensioned beam with laser doppler vibrometer, Measurement, 39/7 (2006) 628-633, https://doi.org/10.1016/j.measurement.2006.01.006.