بهره‌گیری از موتور استرلینگ به منظور بهبود عملکرد و مصرف سوخت یک موتور احتراق داخلی از طریق بازیابی حرارت گازهای خروجی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، آزمایشگاه شاره‌ها و سازه‌های خودرو، دانشکده مهندسی خودرو، دانشگاه علم و صنعت ایران

2 استادیار، آزمایشگاه شاره‌ها و سازه‌های خودرو، دانشکده مهندسی خودرو، دانشگاه علم و صنعت ایران

چکیده

از مجموع انرژی تولید شده در موتورهای احتراق داخلی در بهترین حالت حدود 30 تا 40 درصد به کار مکانیکی مفید تبدیل می­شود و مابقی از طریق گازهای خروجی و سیستم­های خنک­کاری موتور به محیط اطراف منتقل می­شود. بازیابی حرارت خروجی از اگزوز موتورهای احتراق داخلی می­تواند به عنوان یک راه حل برای رفع این مشکل درنظر  گرفته شود. در پژوهش پیش­رو، مدلسازی یک موتور استرلینگ برای بازیابی حرارتی موتور احتراق داخلی با استفاده از روش مرتبه دوم انجام می­­شود. در روش مذکور مدلسازی با فرض انجام فرایندها به صورت آدیاباتیک و دخیل کردن عملکرد واقعی مبدل­های حرارتی، مقاومت جریان عبوری، انتقال حرارت دیواره ها، اثر شاتل، هیسترزی و نشت سیال عامل شرایط عملکرد واقعی موتور استرلینگ GPU-3 شبیه ساز می­گردد. برای این کار از یک الگوریتم حل اختصاصی استفاده می­شود. به منظور استفاده از موتور استرلینگ برای بازیابی حرارتی موتور احتراق داخلی، فرض استفاده از کولر موتور استرینگ در مسیر سیال خنک کننده موتور احتراق داخلی و هیتر موتور استرلینگ در مسیر دودهای خروجی ناشی از احتراق موتور احتراق داخلی درنظر گرفته می­شود. تغییرات دما و دبی جرمی دود خروجی از موتور احتراق داخلی در سرعت­های مختلف، تغییرات عملکرد موتور استرلینگ را موجب می­شود. موتور استرلینگ در حالت بیشینه، قابلیت افزودن توان 10 تا 5/8 اسب بخار و گشتاور 20 تا 22  نیوتن متر در دروهای 1000 تا 6000 دور بر دقیقه موتور به احتراق داخلی را دارا می­باشد. این افزایش توان در شرایطی که هیچ سوخت اضافه­ای سوزانده نشده است، باعث کاهش شاخص مصرف سوخت ویژه ترمزی از 3/46% تا 3/8% می­شود. همچنین با استفاده از موتور استرلینگ در شرایط مختلف کاری علاوه بر افزایش گشتاور موتور احتراق داخلی، می­توان برخی از افت­های گشتاوری در دورهای ابتدایی و انتهایی موتور احتراق داخلی و نوسانات گشتاور در دورهای میانی موتور احتراق داخلی را به خوبی اصلاح نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Utilization of Stirling engine to improve the performance and fuel consumption of an internal combustion engine by exhaust gas heat recovery

نویسندگان [English]

  • Seyed Sajad Kashi 1
  • Ali Qasemian 2
1 MSc, Student of Automotive Engineering Department , Iran University of Science and Technology
2 PhD, Faculty of Automotive Engineering Department, Iran University of Science and Technology
چکیده [English]

About 30 to 40 percent of the total energy produced in internal combustion engines is converted into useful mechanical work at best, and the rest is transferred to the environment through exhaust gases and engine cooling systems. One effective way to overcome mentioned issue is to recover the exhaust gas heat of internal combustion engines. In the present study, in order to recover the wasted energy from the ICE exhaust gases, use of Stirling engine has been suggested. For this purpose, modeling of the Stirling engine was performed by using the second-order method. To approach operating conditions of the stirling engine to actual state, heat and working losses for each moment of the engine movement were calculated separately and added to the modeling. The modeling of the Stirling engine was performed for three operating pressures in different engine speeds, depending on the thermal energy of the internal combustion engine. The results show that, at best condition, Stirling engine produce 5/8 to 10 horsepower and 20 to 22 N.m of torque. By adding these values to the IC engine, we will see a significant increase in power and torque of the hybrid system. It is also possible to achieve a constant torque over a wide range of engine speeds in hybrid engine by using different operating conditions of stirling engine.

کلیدواژه‌ها [English]

  • Heat recovery
  • Stirling engine
  • Second order analysis
  • Adiabatic model
  • Hybrid of Stirling engine and internal combustion engine
[1] J. Jadhao and D. Thombare, "Review on exhaust gas heat recovery for IC engine," International Journal of Engineering and Innovative Technology (IJEIT), vol. 2, no. 12, 2013.
[2] P. Azarikhah, S. J. Haghparast, and A. Qasemian, "Investigation on total and instantaneous energy balance of bio-alternative fuels on an SI internal combustion engine," Journal of Thermal Analysis and Calorimetry, vol. 137, no. 5, pp. 1681-1692, 2019.
[3] H. Özcan and M. Söylemez, "Thermal balance of a LPG fuelled, four stroke SI engine with water addition," Energy conversion and management, vol. 47, no. 5, pp. 570-581, 2006.
[4] A. Qasemian and A. Keshavarz, "Experimental and numerical study of an internal combustion engine coolant flow distribution," Tehnički Vjesnik (strojarski Fakultet), vol. 23, no. 1, pp. 257-264, 2016.
[5] A. Qasemian, A. Keshavarz, H. Setoodeh, A. Mohammadi, and I. Chitsaz, "An Experimental and Numerical Study of Precision Cooling to Determine Optimum Coolant Velocity of Downsized Internal Combustion Engines Using Boiling," SAE Technical Paper, 0148-7191, 2021.
[6] A. Qasemian, P. Azarikhah, and S. Jenabi Haqparast, "Derivation of specific heat rejection correlation in an SI engine; experimental and numerical study," Automotive Science and Engineering, vol. 8, no. 2, pp. 2679-2691, 2018.
[7] M. A. Neshan, A. Keshavarz, A. Jazayeri, and A. Ghasemian, "Thermo-fluid analysis of the exhaust manifold integrated with cylinder head," in Internal Combustion Engine Division Spring Technical Conference,, vol. 44663: American Society of Mechanical Engineers, pp. 965-972,  2012.
[8] M. d. A. Al‐Nimr and A. A. Alajlouni, "Internal combustion engine waste heat recovery by a thermoelectric generator inserted at combustion chamber walls," International Journal of Energy Research, vol. 42, no. 15, pp. 4853-4865, 2018.
[9] D. Di Battista, F. Fatigati, R. Carapellucci, and R. Cipollone, "An improvement to waste heat recovery in internal combustion engines via combined technologies," Energy Conversion and Management, vol. 232, p. 113880, 2021.
[10] M. Güven, H. Bedir, and G. Anlaş, "Optimization and application of Stirling engine for waste heat recovery from a heavy-duty truck engine," Energy Conversion and Management, vol. 180, pp. 411-424, 2019.
[11] L. Shi, G. Shu, H. Tian, and S. Deng, "A review of modified Organic Rankine cycles (ORCs) for internal combustion engine waste heat recovery (ICE-WHR)," Renewable and Sustainable Energy Reviews, vol. 92, pp. 95-110, 2018.
[12] P. Durcansky, R. Nosek, and J. Jandačka, "Use of Stirling Engine for Waste Heat Recovery," Energies, vol. 13, no. 16, p. 4133, 2020.
[13] S. Saadon, "Possibility of Using Stirling Engine as Waste Heat Recovery–Preliminary Concept,” in IOP Conference Series: Earth and Environmental Science”, vol. 268, no. 1: IOP Publishing, 012095.  2019.
[14] S. Saadon and H. Helman, "Design and Modelling of a Beta-Type Stirling Engine for Waste Heat Recovery," Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 64, no. 1, pp. 135-142, 2019.
[15] R. Stirling, "Patent no. 4081," Stirling air engine and the heat regenerator, 1816.
[16] G. Walker, "Stirling engines," 1980.
[17] S. Fan, M. Li, S. Li, T. Zhou, Y. Hu, and S. Wu, "Thermodynamic analysis and optimization of a Stirling cycle for lunar surface nuclear power system," Applied Thermal Engineering, vol. 111, pp. 60-67, 2017.
[18] M. Ni, B. Shi, G. Xiao, H. Peng, U. Sultan, Sh. Wang, Zh. Luo, K. Cen, "Improved Simple Analytical Model and experimental study of a 100 W β-type Stirling engine," Applied Energy, vol. 169, pp. 768-787, 2016.
[19] R. Dyson, S. Wilson, and R. Tew, "Review of computational stirling analysis methods," in 2nd International Energy Conversion Engineering Conference, p. 5582, 2004.
[20] W. T. Beale, "Free piston Stirling engines-some model tests and simulations," SAE Technical Paper, 0148-7191, 1969.
[21] J. Senft, "A simple derivation of the generalized Beale number," in IECEC'82; proceedings of the seventeenth intersociety energy conversion engineering conference, vol. 4, pp. 1652-1655 1982.
[22] G. Schmidt, "The theory of Lehmann's calorimetric machine," Zeitschrift Des Vereines Deutscher Ingenieure, vol. 15, no. 1, pp. 98-112, 1871.
[23] C.-H. Cheng and Y.-J. Yu, "Numerical model for predicting thermodynamic cycle and thermal efficiency of a beta-type Stirling engine with rhombic-drive mechanism," Renewable Energy, vol. 35, no. 11, pp. 2590-2601, 2010.
[24] D.J. Shendage, S.B. Kedare, S.L. Bapat, “Cyclic analysis and optimization of design parameters for Beta-configuration Stirling engine using rhombic drive”, Appl. Therm. Eng. 2017, Vol 124, pp. 595-615, 2017.
[25] I. Urieli and D. M. Berchowitz, "Stirling cycle engine analysis," 1984.
[26] S. Alfarawi, “Thermodynamic analysis of rhombic-driven and crank driven beta-type Stirling engines”, Int J Energy Res. 44, pp. 5596–5608, 2020.
[27] P. Durcansky, R. Nosek and J. Jandacka, “Use of Stirling Engine for Waste Heat Recovery”, Energies 13, 4133, 2020.
[28] T. Finkelstein, "Computer analysis of Stirling engines," Advances in Cryogenic Engineering. Volume 20, vol. 20, pp. 269-282, 1975.
[29] I. Urieli, C. J. Rallis, and D. M. Berchowitz, "Computer simulation of Stirling cycle machines," in 12th intersociety energy conversion engineering conference, vol. 2, pp. 1512-1521 1977.
[30] R. C. Tew, K. Jefferies, and D. Miao, A Stirling engine computer model for performance calculations. Department of Energy, Office of Conservation and Solar Applications …, 1978.
[31]   F. Aksoy, H. Karabulut, C. Çınar, H. Solmaz, Y. O. Ozgoren, A. Uyumaz, “Thermal performance of a Stirling engine powered by a solar simulator”, Appl. Therm. Eng., Vol 86, pp. 161-167, 2015.
[32] F. Aksoy, H. Solmaz, H. Karabulut, C. Cinar, Y.O. Ozgoren, S. Polat, “A thermodynamic approach to compare the performance of rhombic-drive and crank-drive mechanisms for a beta-type Stirling engine”, Appl. Therm. Eng. Vol 93, pp. 359-367, 2016.
[33] D. Ipci and H. Karabulut, “Thermodynamic and dynamic analysis of an alpha type Stirling engine and numerical treatment”, Energy Conversion and Management 169, pp. 34–44, 2018.
[34] Duygu Ipci, “Thermodynamic analysis of a gamma-type stirling engine driven by Scotch Yoke mechanism”, International Journal of Green Energy, 18:2, pp.144-155, 2021.
[35] G. Xiao, U. Sultan, M. Ni, H. Peng, X. Zhou, Sh. Wang, Zh. Luo, “Design optimization with computational fluid dynamic analysis of β-type Stirling engine”, Appl. Therm. Eng., Vol 113, pp. 87-102, 2017.
[36]  C.H. Cheng, Y.F Chen, “Numerical simulation of thermal and flow fields inside a 1-kW beta-type Stirling engine”, Appl. Therm. Eng., Vol 121, pp. 554-561, 2017.
[37] L. Kuban, J. Stempka and A. Tyliszczak, “A 3D-CFD study of a γ-type Stirling engine”, Energy 169, , pp. 142-159, 2019.
[38]  P. Bitsikas, E. Rogdakis and G. Dogkas, “CFD study of heat transfer in Stirling engine regenerator”, Thermal Science and Engineering Progress 17, 2020.
[39] C.H. Cheng and Y.H. Tan, “Numerical Optimization of a Four-Cylinder Double-Acting Stirling Engine Based on Non-Ideal Adiabatic Thermodynamic Model and SCGM Method”, Energies 13, 2020.
[40] A. Batooei and A. K. Valian, "Thermal analysis and efficiency optimization of Otto-Stirling combined cycles with SI engine exhaust heat recovery," Modares Mechanical Engineering, vol. 16, no. 2, pp. 147-158, 2016.
[41] B. Cullen, "The combined Otto and Stirling cycle prime-mover-based power plant," 2011.
[42] M. Hatami, D. Ganji, and M. Gorji-Bandpy, "A review of different heat exchangers designs for increasing the diesel exhaust waste heat recovery," Renewable and sustainable energy reviews, vol. 37, pp. 168-181, 2014.
[43] T. A. NASIRI and S. HASANPOUR, "Exhaust gas heat recovery for an ICE using a Stirling engine combined cycle," 2018.
[44] M. H. Ahmadi et al., "Designing a powered combined Otto and Stirling cycle power plant through multi-objective optimization approach," Renewable and Sustainable Energy Reviews, vol. 62, pp. 585-595, 2016.
[45] B. Cullen and J. McGovern, "Energy system feasibility study of an Otto cycle/Stirling cycle hybrid automotive engine," Energy, vol. 35, no. 2, pp. 1017-1023, 2010.
[46] M. Hatami, D. Ganji, and M. Gorji-Bandpy, "Numerical study of finned type heat exchangers for ICEs exhaust waste heat recovery," Case Studies in Thermal Engineering, vol. 4, pp. 53-64, 2014.
[47] S. Alfarawi, M. Webb-Martin, S. Mahmoud, and R. Al-Dadah, "Thermal analysis of stirling engine to power automotive alternator using heat from exhaust gases," Energy Procedia, vol. 61, pp. 2395-2398, 2014.
[48] R. K. Shah and D. P. Sekulic, Fundamentals of heat exchanger design. John Wiley & Sons, 2003.