شبیه‌سازی و مقیاس‌کردن کمپرسورگریز از مرکز توربوشارژر یک موتور احتراق داخلی رقیق سوز با روش بازطراحی یک‌بعدی و سه‌بعدی و ایجاد اصلاحات هندسی در پروانه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشکده هوافضا، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 استادیار، دانشکده هوافضا، دانشگاه صنعتی امیرکبیر، نام تهران، ایران

3 استاد، دانشکده هوافضا، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

امروزه کاربرد توربوشارژرها در موتورهای احتراق داخلی با هدف افزایش قدرت موتور با حفظ اندازه موتور و نزدیک‌شدن به احتراق دماپایین برای کاهش آلاینده‌ها بسیار حائز اهمیت است. تمرکز این پژوهش روی مقیاس‌بندی کمپرسور گریزازمرکز یک توربوشارژر برای افزایش ظرفیت کمپرسور به مقدار 15 درصد دبی جرمی با حفظ نسبت فشار است؛ به طوریکه عملکرد کمپرسور به لحاظ دامنه عملکردی و راندمان کاهش نیابد و ابعاد کلی توربوشارژر، حفظ شده تا تغییر ایجاد شده، هزینه ساخت را بالا نبرد. برای رسیدن به این هدف راه‌حل‌های متفاوتی وجود دارد؛ اما تمرکز این پژوهش بر روی تغییرات هندسی موثر بدون تغییر محسوس در سرعت دورانی توربوشارژر به منظور حفظ عملکرد توربین محرک است. دو سناریو برای افزایش ظرفیت در این پژوهش بررسی شده  که شامل کاهش شعاع ریشه و افزایش شعاع شرود به همراه تغییر موثر محل قرارگیری پره‌های جداکننده است. در سناریو اول با کاهش شعاع ریشه در ورود  به مقدار 1.8 میلیمتر و تنظیم منحنی ریشه با استفاده از طراحی یک بعدی و سه بعدی، تنها 2 درصد افزایش ظرفیت حاصل شد که کمتر از پیش‌بینی‌ بود. اما در سناریو دوم با افزایش شعاع شرود به اندازه 1.63 میلیمتر در ورود، تنظیم منحنی ریشه با استفاده از طراحی یک بعدی و سه‌بعدی، و تنظیم محل قرارگیری پره‌های جداکننده در 35 درصد طول نصف‌النهاری به طور میانگین 16.5 درصد افزایش ظرفیت در دور طراحی صورت گرفت. پژوهش انجام شده یک روش تحلیلی-عددی قابل اطمینان برای مقیاس‌کردن کمپرسورهای گریز از مرکز ارائه میدهد که مطابق آن، بدون تغییر در ابعاد کلی کمپرسور (که در صورت تغییر مستلزم هزینه و تغییرات اساسی در ساختار پوسته کمپرسور می‌شود)، ظرفیت کمپرسور افزایش می‌یابد. روش ارائه‌ شده برای تمامی کمپرسورهای گریز از مرکز در توربوشارژرها و یا درکاربردهای دیگر قابل  تعمیم‌است. 

کلیدواژه‌ها


عنوان مقاله [English]

Simulation and scale-up of a centrifugal compressor for a turbocharger of a lean combustion engine employing 1-D and 3-D design and geometrical modification of the impeller

نویسندگان [English]

  • Rezvan Rakhshan 1
  • Ali Madadi 2
  • Masoud Boroomand 3
1 Master of Science, Amirkabir University of Technology, Iran
2 Associate Professor, Amirkabir University of Technology, Iran
3 Professor, Amirkabir University of Technology, Iran
چکیده [English]

Nowadays, turbochargers application has been essential to increase the internal combustion engine's power and reduce the emissions while engine size remains unchanged. In this research, the scaling of a centrifugal compressor of a turbocharger is investigated to increase the mass flow rate by 15 percent. In contrast, compressor pressure ratio, efficiency, and performance range should be preserved, and the general dimension will be unchanged to cut the construction costs. This study has focused on the purpose in which the compressor should be compatible with the turbine, so the rotational speed is almost unchanged by the geometrical modification during the investigation. Two scenarios are considered, including reducing the hub radius, increasing the shroud radius, and changing the location of the splitter blade. In the first scenario, the hub radius is decreased by 1.8 mm, and only a 2 percent improvement in mass flow rate is obtained. In the second scenario, in addition to reducing the hub radius, the shroud radius is increased by 1.63 mm. The splitter blade is located at 35 percent of the meridional coordinate. One-dimensional design and three-dimensional simulation show that the mass flow rate is improved by 16.5 percent. The study introduces a reliable analytical-numerical method to scale up a centrifugal compressor without any significant modification on general dimensions, leading to a drastic change in the turbocharger casings and an increase in manufacturing costs). The method is a general way to scale up a centrifugal compressor extended for turbochargers or other applications.

کلیدواژه‌ها [English]

  • 3-D design
  • Turbocharger
  • Centrifugal Compressor
  • numerical simulation
  • Scale-up
[1] J. K. Miller, Turbo: Real World High-Performance Turbocharger Systems. 2008.
[2] R. D. Reitz and G. Duraisamy, “Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines,” Prog. Energy Combust. Sci., vol. 46, pp. 12–71, 2015.
[3] A. Broatch, J. Galindo, R. Navarro, and J. García-Tíscar, “Numerical and experimental analysis of automotive turbocharger compressor aeroacoustics at different operating conditions,” Int. J. Heat Fluid Flow, vol. 61, pp. 245–255, 2016.
[4] J. Galindo, A. Gil, R. Navarro, and D. Tarí, “Analysis of the impact of the geometry on the performance of an automotive centrifugal compressor using CFD simulations,” Appl. Therm. Eng., vol. 148, no. November 2018, pp. 1324–1333, 2019.
[5] S.A. Moussavi Torshizi, A. Hajilouy Benisi and M. Durali. "Numerical optimization and manufacturing of the impeller of a centrifugal compressor by variation of splitter blades." Turbo Expo: Power for Land, Sea, and Air. Vol. 49866. American Society of Mechanical Engineers, 2016.
[6] Ramachandran, Dhinagaran, Balamurugan Mayandi, Seran Krishnamoorthy, Gopalakrishnan Mani, Vasudevan Ramesh, and Swathi Chitra Lakshmanan. "Development of Efficient Compressors for Turbochargers." In Turbo Expo: Power for Land, Sea, and Air, vol. 50954, p. V008T26A021. American Society of Mechanical Engineers, 2017.
[7] J. T. John, N. Mohanan, and A. K. D. Velayudhan, “Performance evaluation of a turbocharger compressor by varying the exit width, eye tip radius and extending the shroud to study their impact using computational modelling,” in ASME 2017 Gas Turbine India Conference, Vol. 1, pp. 1-7, 2017.
[8] Zhang, Fangming, and Roland Baar. "Geometric optimization of turbocharger compressor and its influence on engine performance." MATEC Web of Conferences. Vol. 108. EDP Sciences, 2017.
[9] K. Kumar Chandramohan, K. Purushothaman, V. Pandurangi and K. Prasad Deshkulkarni, "Experimental and Numerical Investigation of Operating Range Enhancement Techniques in Centrifugal Compressor for Turbochargers." In Gas Turbine India Conference, vol. 58509, p. V001T01A013. American Society of Mechanical Engineers, 2017.
[10] S. Seralathan, and D.G. Roy Chowdhury, "Modification of centrifugal impeller and effect of impeller extended shrouds on centrifugal compressor performance, Vol. 64, pp. 1119-1128, 2013.
[11] O.F. Atac, J.E. Yun and T. Noh, Aerodynamic design optimization of a micro radial compressor of a turbocharger, Vol. 11, No. 7, pp. 1827, 2018.
[12] B. Savic, R. Zimmermmann, B. Jander, R. Baar, "New Phenomenological and Power-Based Approach for Determining the Heat Flows of a Turbocharger Directly from Hot Gas Test Data", 12th European Conference on Turbomachinery Fluid dynamics & Thermodynamics, ETC12, April3-7, 2017.
[13] J. Galindo, A. Tiseira, R. Navarro, and M. A. López, “Influence of tip clearance on flow behavior and noise generation of centrifugal compressors in near-surge conditions,” Int. J. Heat Fluid Flow, vol. 52, pp. 129–139, 2015.
[14] R.H. Aungier, Centrifugal compressors., 1st ed. New York: The American Society of Mechanical Engineering, 2000.
[15] N.C.B.A. Whitfield, Design of Radial Turbomachines-, 1st ed. Harlow: Jhon Wiley and Sons, Inc, 1990.
[16] A.C. Ugural and S.K. Fenster, “Advanced strength and applied elasticity 4th.” p. 570, 1995.