بررسی اثرات اقلیم جغرافیایی بر مشخصه‌های داده‌های آماری و چرخة رانندگی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک دانشگاه سمنان، سمنان، ایران

2 شرکت تحقیق، طراحی و تولید موتور ایران‌خودرو (ایپکو)، تهران، ایران

10.22034/er.2023.2009114.1013

چکیده

اهمیت تأثیر اقلیم جغرافیایی بر متغیرهای عملکردی خودروها، انجام مطالعات و پژوهش‌­های جامعی را در این زمینه ایجاب می­‌کند، به ویژه در کشور ایران که تنوع شرایط اقلیمی در آن کاملاً مشهود است. امتیازات عاملی هر یک از مؤلفه‌های تأثیرگذار در تعیین اقلیم، کشور ایران را به چهار دسته اقلیمی تقسیم­‌بندی می‌کند، که عبارتند از: (1) خشک، (2) مرطوب پربارش، (3) نیمه مرطوب نیمه خشک و (4) مرطوب کم بارش. لذا در این تحقیق، تأثیر اقلیم جغرافیایی بر مشخصه‌های داده‌های آماری و چرخة رانندگی، مورد بررسی قرار گرفته است. بدین منظور، چهار شهر اراک (نیمه خشک تا نیمه مرطوب)، تهران (خشک)، اهواز (مرطوب کم بارش) و رشت (مرطوب پر‌بارش)، به عنوان نماینده اقلیم خود انتخاب شدند. سپس با کاهش ابعاد داده‌ها از 12 به 2 مشخصه داده آماری، با استفاده از تحلیل حساسیت و در ادامه با خوشه‌بندی داده‌ها به روش میانگین کی، و استخراج چرخه‌های رانندگی هر شهر تحت شرایط اقلیمی متفاوت، تأثیر اقلیم جغرافیایی بر مشخصه‌های داده‌های آماری و چرخه‌های رانندگی بررسی شد، و همچنین داده‌های شهر رشت در روزهای بارانی و غیر بارانی از یکدیگر تفکیک و بررسی شد که در نتایج بررسی‌ها مشاهده شد شرایط اقلیمی می‌تواند تأثیرات قابل توجهی بر روی میانگین سرعت رانندگی (حدود 21%)، مدت زمان سفر (حدود 18%) و همچنین میانگین سرعت سفر (حدود 22%) و توقف خودرو (حدود 84%) داشته باشد. در نتیجه می‌توان بیان کرد که اقلیم جغرافیایی یکی از تأثیرگذارترین عوامل بر چرخه‌های رانندگی است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the effects of geographics climate on the characteristics of statistical data and driving cycle

نویسندگان [English]

  • Alireza Asadi 1
  • Mohammad Azadi 1
  • Mohammad Hossein Khalesi 1
  • Seyed Ashkan Moosavian 2
1 Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
2 Irankhodro Powertrain Company (IPCo), Tehran, Iran
چکیده [English]

The importance of the effect of geographic climate on the performance parameters of cars requires comprehensive studies and research in this field, especially in Iran, where the diversity of climatic conditions is clearly evident. The factor scores of each of the influential components in determining the climate divide Iran into four climatic categories, which are: (1) dry, (2) humid with heavy rainfall, (3) semi-humid, semi-dry and (4) humid with little rainfall. Therefore, in this research, the effect of geographic climate on the characteristics of statistical data and driving cycle has been investigated. For this purpose, four cities of Arak (semi-arid to semi-humid), Tehran (dry), Ahvaz (humid with low rainfall) and Rasht (humid with high rainfall) were selected as representatives of their climate. Then, by reducing the dimensions of the data from 12 to 2 statistical data characteristics, using PCA analysis, and then by clustering the data using the chemical mean method, and extracting the driving cycles of each city under different climatic conditions, the effect of the geographic climate on the characteristics of the statistical data and the driving cycles of the case was investigated, and also the data of the city of Rasht on rainy and non-rainy days were separated and analyzed, and in the results of the investigations, it was observed that climatic conditions can have significant effects on the average driving speed (about 21 percent), travel time ( about 18 percent) as well as average travel speed (about 22 percent) and car stopping percentage (about 84.4 percent). As a result, it can be said that geographical climate is one of the most influential factors on driving cycles.

کلیدواژه‌ها [English]

  • Geographical Climate
  • Weather Conditions
  • Statistical Characteristics
  • Driving Cycle
  • K-means
  • Clustering
[1] Giakoumis EG. Driving and Engine Cycles. Springer International Publishing AG. 2017. doi: 1007/10/978-3-319-49034-2
[2] Barlow TJ, Latham S, McCrae IS, Boulter PG. A reference book of driving cycles for use in the measurement of road vehicle emissions, Project Report. 2009; Version 3.
[3] Abbasi F, Bazgeer S, Rezazadeh Kalehbasti P, Asadi Oskoue E, Haghighat M. New climatic zones in Iran: A comparative study of different empirical methods and clustering technique. Theoretical and Applied Climatology. 2022; 147: 47-61. doi: 10.1007/s00704-021-03847-y
[4] Mirmoosavi SH, Kiani H. Investigating the climatic classification of Kopen in Iran in 1975 and comparing it with the output of the MICRO model for the years 2030, 2050, 2080 and 2100 under A1B and A2 scenarios (with an emphasis on the issue of climate change), Geography and Environmental Hazards. 2017; 22: 59-72. doi: 10.22067/geo.v6i2.57155
[5] Bi H, Ye Z, Zhu H, Data-driven analysis of weather impacts on urban traffic conditions at the city level,Urban Climate. 2022; 41: 101065. doi: 10.1016/j.uclim.2021.101065
[6] Donkers A, Yang D, Viktorovic M, Influence of driving style, infrastructure, weather and traffic on electric vehicle performance, Transportation Research Part D. 2020; 88: 102569. doi: 10.1016/j.trd.2020.102569
[7] Zhou W, Xu K, Yang Y, Lu J. Driving cycle for electric vehicle application using principal component analysis and k-mean cluster: with the case of Shenyang, China. Energy Procedia. 2017; 105: 2831-2836. doi: 10.1016/j.egypro.2017.03.620
[8] He H, Cao J, Peng J. Online prediction with variable horizon for vehicle’s future driving-cycle. Energy Procedia. 2017; 15: 2348-1353. doi: 10.1016/j.egypro.2017.03.674
[9] Li Y, Peng J, He H, Xie S. The study on multi-scale prediction of future driving cycle based on Markov chain. Energy Procedia. 2017 May; 105: 3219-3224. doi: 10.1016/j.egypro.2017.03.709
[10] Zhang F, Guo F, Huang H. A study of driving cycle for electric special-purpose vehicle in Beijing. Energy Procedia. 2017; 105: 4884-4889. doi: 10.1016/j.egypro.2017.03.967
[11] Zhou S, Jin J, Wei Y, A driving cycle for a fuel cell logistics vehicle on a fixed route: Case of the Guangdong province. World Electric vehicle. 2021; 12: 5. doi: 3390/10/wevj12010005
[12] Topic J, Skugor B, Deur J. Synthesis and Feature Selection-Supported Validation of Multidimensional Driving Cycles. Sustainability. 2021; 13(9): 4704. doi: 3390/10/su13094704
[13] Yang Y, Li L, Zhang T, Yu Q. Time dimension analysis: Comparison of Nanjing local driving cycles in 2009 and 2017. Sustainable Cities and Society. 2020; 53: 101949. doi: 10.1016/j.scs.2019.101949
[14] Liu B, Shi Q, He L,  Qiu D. A study on the construction of Hefei urban driving cycle for passenger vehicle. IFAC-PapersOnLine. 2018; 51: 854-858. doi: 10.1016/j.ifacol.2018.10.100
[15] Qiu D, Li Y, Qiao D. Recurrent Neural Network Based Driving Cycle Development for Light Duty Vehicles in Beijing. Transportation Research Procedia. 2018; 34: 147-154. doi: 10.1016/j.trpro.2018.11.026
[16] Ramadurai G, Ramya M, Srinath M, Developing driving cycles using k-means clustering and determining their optimal duration. Transportation Research Procedia. 2020; 48: 2083-2095. doi: 10.1016/j.trpro.2020.08.268
[17] Guo J, Chao S, Hongwen H, Jiankun P, Urban global driving cycle construction method and global optimal energy management in plug-in hybrid electric vehicle. Energy Procedia. 2018; 152: 593-598. doi: 10.1016/j.egypro.2018.09.216
[18] Raziei T. Koppen-Geiger climate classification of Iran and investigation of its changes during 20th century. Journal of The Earth and Space Physics. 2017; 43(2): 419-439. [In Persian]
[19] Teymoori M, Azimzadeh J. Climatic zoning of Iran using effective precipitation index, Water scarcity and drought research center in agriculture and natural resources. 2011; 5: 18.
[20] Rahimi J, Laux P, Khalili A. Assessment of climate change over Iran: CMIP5 results and their presentation in terms of Koppen–Geiger climate zones. Theoretical and Applied Climatology. 2020; 141: 183-199. doi: 10.1007/s00704-020-03190-8
[21] Varvani H, Mardian M, Khoramdel N, Farhadi B. Application of regionalism method based on cropped ecology for determining yield gap of irrigated wheat in the climate groups of Iran. Iranian Water Research Journal. 2016; 10(3): 11-20. [In Persian]
[22] Bahmanabadi B, Kaviani A. Estimation of potential evaporation spiration in different climates of Iran. Iran Water and Soil Research. 2020; 51(6): 1479-1499. doi: 10.22059/ijswr.2020.295777.668473 [In Persian]
[23] Zhao X, Zhao X, Yu Q, Ye M, Ye Y. Development of a representative urban driving cycle construction methodology for electric vehicles: A case study in Xi’an. Transportation Research. 2020; 81: 102279. doi: 10.1016/j.trd.2020.102279
[24] Shahraki J, Sabouhi M, Yaghoubi M. The impacts of climate change on wheat production: A stochastic production function approach. Natural Environment Hazards. 2017; 6(11): 69-84. doi: 10.22111/jneh.2017.3074 [In Persian]
[25] Moosavian A, Abdolmaleki S, Rezaei M, Nejat M. Driving cycle extraction of Tehran city’s west region for a car with turbocharged engine using microtrip clustering method. The Journal of Engine Research. 2019; 55: 3-12. [In Persian]
[26] Arun NH, Mahesh S, Ramadurai G, Nagendra S. Development of driving cycles for passenger cars and motorcycles in Chennai, India. Sustainable Cities and Society. 2017; 32: 508-519. doi: 1016/10/j.scs.05/2017.001
[27] Moosavian SA, Gharaati T, Azadi M, Momenimovahed A. Comparing the performance of support vector machine and average k algorithms in extracting the real Tehran-Amol combined driving cycle. Amirkabir Mechanical Engineering Journal. 2021; 53(9): 5017-5036. doi: 10.22060/mej.2021.19222.6980 [In Persian]
[28] Moosavian SA, Gharaati T, Azadi M, Momenimovahed A, Nickhah M. Comparison of driving characteristic parameters using real data collected in Iran and world standard cycles. The 11th International Conference on Internal Combustion Engines and Oil. 2019; Tehran, Iran. [In Persian]
[29] Montazeri M, Fotouhi A, Naderpour A. Driving Features and Their Influences on Hybrid Electric Vehicle’s Fuel Consumption and Exhaust Emissions. The Journal of Engine Research. 1401; 17: 42-51. [In Persian]