بررسی اثر نانوسیال Al2O3 در سیستم خنک‌کاری موتور M13NI

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی مکانیک، دانشگاه فنی و حرفه‌ای، تهران، ایران

چکیده

در این تحقیق عملکرد حرارتی موتور M13NI با استفاده از نانوسیال AL2O3+H2O در محیط آزمایشگاهی بررسی شد. در این آزمایش آب و اتیلن‌گلیکول به‌عنوان سیال‌های پایه با نانوذرات AL2O3 ترکیب و مورد استفاده قرار گرفت. در این تحقیق از نانوذرات nm 20 با درصدهای حجمی 1 الی 2 درصد استفاده شد. نتایج نشان داد با اضافه نمودن سورفکتانت SDBS به AL2O3، نانوسیال تهیه‌شده در 22 روز اول پایدار است. همچنین مقدار پتانسیل زتا 37.7 mv برآورد شد که نشان از پایداری نانوسیال دارد. افزایش کسر حجمی نانوذرات، باعث افزایش انتقال حرارت و افزایش افت فشار و همچنین کاهش پارامتر مریت (نسبت انتقال حرارت به قدرت پمپ) شد. در دور RPM 1150 و وجود 1 درصد کسر حجمی نانوذرات در سیال پایه آب به ترتیب افزایش 2/7 و 1/13 درصد حرارت دفع شده نسبت به مخلوط آب+اتیلن‌گلیکول و آب خالص مشاهده شد. افزایش کسر حجمی نانوذرات در سیال پایه موجب کاهش دمای خروجی از رادیاتور شده که این عمل باعث افزایش اختلاف دمای ورودی و خروجی گردیده و نرخ انتقال حرارت افزایش می‌یابد. با استفاده از نانوسیال می‌توان اندازه رادیاتور و حجم سیستم خنک‌کاری را کوچک نمود و در نتیجه مقدار آب در گردش و توان تلف‌شده موتور را کاهش داد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the effect of AL2O3 nanofluid in M13NI engine cooling system

نویسندگان [English]

  • Bahman Rahmatinejad
  • Hossein Rahimi Asiabaraki
  • Farzin Azimpour Shishevan
Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran
چکیده [English]

In this study, AL2O3+H2O nanofluid was used in a laboratory setting to test the thermal performance of the M13NI engine. AL2O3 nanoparticles were employed in this experiment along with base fluids made of water and ethylene glycol. We employed 20 nm nanoparticles with volume fractions of 1 to 2%. The outcomes demonstrated that the AL2O3 nanofluid made in the first 22 days was stable after being added SDBS sulphate. Additionally, the zeta potential, which was calculated to be 37.7 mv, shows the stability of the nanofluid. The heat transmission and pressure drop rose as the volume fraction of nanoparticles increased, while the merit parameter fell (ratio of heat transfer to pump power). At 1150 RPM and 1% volume fraction of nanoparticles in the water-based fluid, it was found that the heat dissipated increased by 7.2 and 13.1% in comparison to the mixture of water+ethylene glycol and pure water, respectively. When the volume proportion of nanoparticles in the base fluid increases, the radiator's outlet temperature decreases, resulting in a greater difference between the inlet and outlet temperatures and a faster rate of heat transfer. By utilizing nanofluid, it is possible to lower the radiator's size and the volume of the cooling system, so reducing the volume of circulating water and the engine's wasted power.

کلیدواژه‌ها [English]

  • Nanofluid
  • Nanoparticles
  • Heat Transfer Coefficient
  • M13NI Engine
  • Al2O3
[1] A. Forooghifar, A. Sehat, Thermal analysis of car radiators in the presence of air flow through the radiator, 10th International Conference on Internal Combustion Engines & Oil, (13-15 February 2017), Tehran, Iran. (In Persian)
[2] B. Rahmatinejad, M. Abbasgholipour, B. Mohammadi Alasti, Redesign of engine radiator based on number of optimal fans using a genetic algorithm, Karafan, 17/4 (2021) 99-118, https://doi.org/10.48301/KSSA.2021.128398. (In Persian)
[3] S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, ASME International Mechanical Engineering Congress & Exposition, (12-17 November 1995), San Francisco, United States.
[4] S.O. Giwa, K.A. Adegoke, M. Sharifpur, J.P. Meyer, Research trends in nanofluid and its applications: a bibliometric analysis, Journal of Nanoparticle Research, 24/3 (2022) 1-22, https://doi.org/10.1007/s11051-022-05453-z.
[5] M. Rezazadeh, H. Arkavazi, Numerical simulation of heat transfer inside a car radiator using nanofluid, The first competition of the Comprehensive International Conference on Engineering Sciences in Iran, (8 September 2016), Bandar Anzali, Iran. (In Persian)
[6] A. Yaghoobi, H. Pourmirzaagha, J. Rezapour, M. Haghdadi, Experimental study of total heat transfer in car radiators using aluminum oxide nanofluid, 8th Chiller and Cooling Tower Heat Converters Conference, (22 December 2016), Tehran, Iran. (In Persian)
[7] T. Ganesan, P. Seeni Kannan, Heat-transfer enhancement of nanofluids in a car radiator, Materials and technology, 52/4 (2018) 507-512, https://doi.org/10.17222/mit.2017.171.
[8] H. Xie, Y. Li, W. Yu, Intriguingly high convective heat transfer enhancement of nanofluid coolants in laminar flows, Physics Letters A, 374/25 (2010) 2566-2568, https://doi.org/10.1016/j.physleta.2010.04.026.
[9] K.Y. Leong, R. Saidur, S.N. Kazi, A.H. Mamun, Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator), Applied Thermal Engineering, 30/17-18 (2010) 2685-2692, https://doi.org/10.1016/j.applthermaleng.2010.07.019.
[10] S.M. Peyghambarzadeh, S.H. Hashemabadi, S.M. Hoseini, M. Seifi Jamnani, Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators, International Communications in Heat and Mass Transfer, 38/9 (2011) 1283-1290, https://doi.org/10.1016/j.icheatmasstransfer.2011.07.001.
[11] S.M. Peyghambarzadeh, S.H. Hashemabadi, M. Naraki, Y. Vermahmoudi, Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator, Applied Thermal Engineering, 52/1 (2013) 8-16, https://doi.org/10.1016/j.applthermaleng.2012.11.013.
[12] M. Naraki, S.M. Peyghambarzadeh, S.H. Hashemabadi, Y. Vermahmoudi, Parametric study of overall heat transfer coefficient of CuO/water nanofluids in a car radiator, International Journal of Thermal Sciences, 66 (2013) 82-90, https://doi.org/10.1016/j.ijthermalsci.2012.11.013.
[13] A.M. Hussein, R.A. Bakar, K. Kadirgama, K.V. Sharma, Heat transfer enhancement using nanofluids in an automotive cooling system, International Communications in Heat and Mass Transfer, 53 (2014) 195-202, https://doi.org/10.1016/j.icheatmasstransfer.2014.01.003.
[14] H.M. Ali, H. Ali, H. Liaquat, H.T.B. Maqsood, M.A. Nadir, Experimental investigation of convective heat transfer augmentation for car radiator using ZnO–water nanofluids, Energy, 84 (2015) 317-324, https://doi.org/10.1016/j.energy.2015.02.103.
[15] M. Raja, R. Vijayan, P. Dineshkumar, M. Venkatesan, Review on nanofluids characterization, heat transfer characteristics and applications, Renewable and Sustainable Energy Reviews, 64 (2016) 163-173, https://doi.org/10.1016/j.rser.2016.05.079.
[16] M.B. Bigdeli, M. Fasano, A. Cardellini, E. Chiavazzo, P. Asinari, A review on the heat and mass transfer phenomena in nanofluid coolants with special focus on automotive applications, Renewable and Sustainable Energy Reviews, 60 (2016) 1615-1633, https://doi.org/10.1016/j.rser.2016.03.027.
[17] J. Heydarbeigi, Investigation of the effect of using copper nanofluid, silver nanofluid and aluminum oxide on the heat transfer rate of Ferguson 285 copper tractor engine radiator, 1st International Conference on Applied Research in Agricultural Sciences, Natural Resources and Environment, (16 July 2017), Hamedan, Iran. (In Persian)
[18] B. Rahmatinejad, M. Abbasgholipour, B. Mohammadi Alasti, Experimental Evaluation of Heat Transfer of MF 285 Tractor Radiator, using Nano-fluid AL2O3+Water, Journal of Agricultural Machinery, 12/3 (2022) 281-299, https://doi.org/10.22067/jam.2020.58870.0. (In Persian)
[19] H. Ghasemi Zavaragh, Optimization of the cooling system of a gasoline internal combustion engine to reduce fuel consumption and exhaust emissions, Karafan, 19/1 (2022) 291-309, https://doi.org/10.48301/KSSA.2021.284665.1580. (In Persian)
[20] N.V. Suramwar, S.R. Thakare, N.T. Khaty, Synthesis and catalytic properties of nano CuO prepared by soft chemical method, International Journal of Nano Dimension, 3/1 (2012) 75-80, https://doi.org/10.7508/IJND.2012.01.009.
[21] K. Kannaki, P.S. Ramesh, D. Geetha, Hydrothermal synthesis of CuO nanostructure and their characterizations, International Journal of Scientific & Engineering Research, 3/9 (2012) 1-4.
[22] S.K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, ASME Journal of Heat and Mass Transfer, 125/4 (2003) 567-574, https://doi.org/10.1115/1.1571080.
[23] B. Rahmatinejad, M. Abbasgholipour, B. Mohammadi Alasti, Investigating thermo-physical properties and thermal performance of Al2O3 and CuO nanoparticles in Water and Ethylene Glycol based fluids, International Journal of Nano Dimension, 12/3 (2021) 252-271, https://doi.org/10.22034/IJND.2021.681560.
[24] B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer, 11/2 (1998) 151-170, https://doi.org/10.1080/08916159808946559.
[25] C.J. Ho, W.K. Liu, Y.S. Chang, C.C. Lin, Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study, International Journal of Thermal Sciences, 49/8 (2010) 1345-1353, https://doi.org/10.1016/j.ijthermalsci.2010.02.013.
[26] H.C. Brinkman, The Viscosity of Concentrated Suspensions and Solutions, The Journal of Chemical Physics, 20/4 (1952), https://doi.org/10.1063/1.1700493.
[27] A. Turgut, I. Tavman, M. Chirtoc, H.P. Schuchmann, C. Sauter, S. Tavman, Thermal Conductivity and Viscosity Measurements of Water-Based TiO2 Nanofluids, International Journal of Thermophysics, 30/4 (2009) 1213-1226, https://doi.org/10.1007/s10765-009-0594-2.
[28] M. Bahiraei, S.M. Hosseinalipour, K. Zabihi, E. Taheran, Using neural network for determination of viscosity in water-TiO2 nanofluid, Advances in Mechanical Engineering, 4 (2012), https://doi.org/10.1155/2012/742680.
[29] X. Fan, H. Chen, Y. Ding, P.K. Plucinski, A.A. Lapkin, Potential of ‘nanofluids’ to further intensify microreactors, Green Chemistry, 10/6 (2008) 670-677, https://doi.org/10.1039/B717943J.
[30] A. Ghadimi, I.H. Metselaar, The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of titania nanofluid, Experimental Thermal and Fluid Science, 51 (2013) 1-9, https://doi.org/10.1016/j.expthermflusci.2013.06.001.
[31] T. Yiamsawas, A.S. Dalkilic, O. Mahian, S. Wongwises, Measurement and Correlation of the Viscosity of Water-Based Al2O3 and TiO2 Nanofluids in High Temperatures and Comparisons with Literature Reports, Journal of Dispersion Science and Technology, 34/12 (2013) 1697-1703, https://doi.org/10.1080/01932691.2013.764483.
[32] D. Wen, G. Lin, S. Vafaei, K. Zhang, Review of nanofluids for heat transfer applications, Particuology, 7/2 (2009) 141-150, https://doi.org/10.1016/j.partic.2009.01.007.
[33] J.C. Maxwell Garnett, Colours in metal glasses and in metallic films, Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 203/359-371 (1904) 385-420, https://doi.org/10.1098/rsta.1904.0024.
[34] W.M. Rohsenow, J.P. Hartnett, Y.I. Cho, Handbook of Heat Transfer, McGraw-Hill Education, (1998), ISBN: 9780070535558, 0070535558
[35] W.M. Kays, Numerical Solutions for Laminar-Flow Heat Transfer in Circular Tubes, Transactions of the ASME, 77/8 (1955) 1265-1272, https://doi.org/10.1115/1.4014661.
[36] S. Wu, D. Zhu, X. Li, H. Li, J. Lei, Thermal energy storage behavior of Al2O3–H2O nanofluids, Thermochimica Acta, 483/1-2 (2009) 73-77, https://doi.org/10.1016/j.tca.2008.11.006.
[37] F.W. Dittus, L.M.K. Boelter, Heat transfer in automobile radiators of the tubular type, International Communications in Heat and Mass Transfer, 12/1 (1985) 3-22, https://doi.org/10.1016/0735-1933(85)90003-X.
[38] V. Gnielinski, Neue Gleichungen für den Wärme-und den Stoffübergang in turbulent durchströmten Rohren und Kanälen, Forschung im Ingenieurwesen A, 41 (1975) 8-16, https://doi.org/10.1007/BF02559682.